DOI QR코드

DOI QR Code

Impact of bonding defect on the tensile response of a composite patch-repaired structure: Effect of the defect position and size

  • N., Kaddouri (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • K., Madani (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • S.CH., Djebbar (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • M., Belhouari (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • R.D.S.G., Campliho (INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering)
  • Received : 2021.11.24
  • Accepted : 2022.12.06
  • Published : 2022.12.25

Abstract

Adhesive bonding has seen rapid development in recent years, with emphasis to composite patch repairing processes of geometric defects in aeronautical structures. However, its use is still limited given its low resistance to climatic conditions and requirement of specialized labor to avoid fabrication induced defects, such as air bubbles, cracks, and cavities. This work aims to numerically analyze, by the finite element method, the failure behavior of a damaged plate, in the form of a bonding defect, and repaired by an adhesively bonded composite patch. The position and size of the defect were studied. The results of the numerical analysis clearly showed that the position of the defect in the adhesive layer has a large effect on the value of J-Integral. The reduction in the value of J-Integral is also related to the composite stacking sequence which, according to the mechanical properties of the ply, provides better load transfer from the plate to the repair piece through the adhesive. In addition, the increase in the applied load significantly affects the value of the J-Integral at the crack tip in the presence of a bonding defect, even for small dimensions, by reducing the load transfer.

Keywords

References

  1. Abaqus/CAE Ver 6.14 User's Manual (2015), Hibbitt, Karlsson & Sorensen, Inc..
  2. Baker, A., Bitton D. and Wang, J. (2012), "Development of a proof test for through-life monitoring of bond integrity in adhesively bonded repairs to aircraft structure", Int. J. Adhes. Adhes., 36, 65-76. https://doi.org/10.1016/j.ijadhadh.2012.03.004.
  3. Baker, A.A. and Rose, L.R.F. (2002), Jones R. Advances in the Bonded Composite Repairs of Metallic Aircraft Structures, Vols. 1 and 2, London.
  4. Benchiha, A. and Kouider, M. (2015), "Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint", Struct. Eng. Mech., 53(5), 1017-103. http://doi.org/10.12989/sem.2015.53.5.1017.
  5. Botelho, E. and Botelho, C. (2009), "Fatigue behaviour study on repaired aramid fiber/epoxy composites", J. Aerosp. Technol. Manage., 1(2), 217-221. http://doi.org/10.5028/jatm.2009.0102217 221.
  6. CADEC version 20.04.99 (1998), Ever J. Barbero. .
  7. Cheng, Y., Lien, F.S., Yee, E. and Sinclair, R. (2003), "A comparison of large eddy simulations with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes", J. Wind Eng. Indus. Aerodyn., 91(11), 1301-1328. https://doi.org/10.1016/j.jweia.2003.08.001.
  8. Elhannani, M., Madani, K., Legrand, E., Touzain, S. and Feaugas, X. (2017), "Numerical analysis of the effect of the presence, number and shape of bonding defect on the shear stresses distribution in an adhesive layer for the single-lap bonded joint. Part 1", Aerosp. Sci. Technol., 62, 122-135. http://doi.org/10.1016/j.ast.2016.11.024.
  9. Elhannani, M., Madani, K., Chama, Z., Legrand, E., Touzain, S. and Feaugas, X. (2017), "Influence of the presence of defects on the adhesive layer for the single-lap bonded joint Part II. Probabilistic assessment of the critical state", Aerosp. Sci. Technol., 63, 372-386. http://doi.org/10.1016/j.ast.2016.12.020.
  10. Fekih, S.M., Albedah, A., Benyahia, F., Belhouari, M., Bouiadjra, B.B. and Miloudi, A. (2012), "Optimisation of the sizes of bonded composite repair in aircraft structures", Mater. Des., 41, 171-176. http://doi.org/10.1016/j.ma tdes.2012.04.025.
  11. Feng, W., Xu, F., Yuan, J., Zang, Y. and Zhang, X. (2019), "Focusing on in-service repair to composite laminates of different thicknesses via scarf-repaired method", Compos. Struct., 207, 826-835. https.//doi.org/10.1016/j.compstruct.09.096.
  12. Hosseini-Toudeshky, H. and Mohammadi, B. (2009), "Mixed-mode numerical and experimental fatigue crack growth analyses of thick aluminium panels repaired with composite patches", Compos. Struct., 91, 1-8. http://doi.org/10.1016/j.compstruct.2009.04.022.
  13. Hosseini-Toudeshky, H., Sadeghi, G. and Daghyani, H.R. (2005), "Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches", Compos. Struct., 71(3-4), 401-406. http://doi.org/10.1016/j.compstruct.2005.09.032.
  14. Jiang, H., Ren, Y. and Liu, Z. (2019), "Numerical prediction for effects of fiber orientation on perforation resistance behaviors of patch-repaired composite panel subjected to projectile impact", Thin Wall. Struct., 144, 106325. https://doi.org/10.1016/j.tws.2019.106325.
  15. Kaci, D. A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679. https://doi.org/10.12989/aas.2017.4.6.679.
  16. Kaddouri, N., Madani, K., Bellali, M.A. and Feaugas, X. (2019), "Analysis of the presence of bonding defects on the fracture behavior of a damaged plate repaired by composite", Frattura ed Integrita Strutturale, 13(49), 331-340.
  17. Kaddouri, N., Madani, K., Feaugas, X. and Rezgani, L. (2019), "Effect of the use of a hybrid composite patch on the resistance of an endomaged and repaired plate, effect of the presence of bonding defect", International Conference on Meterials and Energy. ICOM'19, Hammamet, Tunisia.
  18. Kaddouri, N., Madani, K., Rezgani, L., Mokhtari, M. and Feaugas, X. (2020), "Analysis of the effect of modifying the thickness of a damaged and repaired plate by composite patch on the J-Integral: Effect of bonding defects", J. Brazil. Soc. Mech. Sci. Eng., 42(8), 1-21. https.//doi.org/10.1007/s40430-020-02515-y.
  19. Liu, X., He, Y., Qiu, D. and Yu, Z. (2019), "Numerical optimizing and experimental evaluation of stepwise rapid high-pressure microwave curing carbon fiber/epoxy composite repair patch", Compos. Struct., 230, 111529. https.//doi.org/10.1016/j.compstruct.2019.111529.
  20. Madani, K., Touzain, S., Feaugas, X., Cohendouz, S. and Ratwani, M. (2010), "Experimental and numerical study of repair techniques for panels with geometrical discontinuities", Comput. Mater. Sci., 48(1), 83-93. https://doi.org/10.1016/j.commatsci.2009.12.005.
  21. Makwana, A.H. and Shaikh, A.A. (2019), "Towards hybridization of composite patch in repair of cracked aluminum panel: Numerical and experimental study", Int. J. Struct. Integr., 10(6), 868-887. https://doi.org/10.1108/IJSI-03-2019-0015.
  22. Makwana, A.H. and Shaikh, A.A. (2021), "The role of patch hybridization on tensile response of cracked panel repaired with hybrid composite patch: Experimental and numerical investigation", J. Adhes., 97(1), 53-87. https://doi.org/10.1080/00218464.2019.1629911.
  23. Mokhtari, M., Madani, A., Benzaama, H. and Malarino, S. (2017), "Effects of the composite stacking sequence on the failure load of the single lap bonded joint", J. Theor. Appl. Mech., 55(4), 1257-1268. http://doi.org/10.15632/jtam-pl.55.4.1257.
  24. Naboulsi, S. and Mall, S. (1996), "Modeling of a cracked metallic structure with bonded composite patch using the tree layer technique", Compos. Struct., 35, 295-308. https://doi.org/10.1016/0263-8223(96)00043-8.
  25. Naboulsi, S. and Mall, S. (1997), "Characterization of fatigue crack growth in aluminum panels with a bonded composite patch", Compos. Struct., 37(3-4), 321-334. https://doi.org/10.1016/S0263-8223(98)80003-2.
  26. Naboulsi, S. and Mall, S. (1997), "Fatigue crack growth of adhesively repaired panel using perfectly and imperfectly composite patches", Theor. Appl. Fract. Mech., 28, 13-28. https://doi.org/10.1016/S0167-8442(97)00027-X.
  27. Naboulsi, S. and Mall, S. (1997), "Methodology to analyze aerospace structures repaired with a bonded composite patch", J. Strain Anal., 34(6), 395-412. https://doi.org/10.1243/0309324991513849.
  28. Naboulsi, S. and Mall, S. (1997), "Thermal effects on adhesively bonded composite repair of cracked aluminum panels", Theor. Appl. Fract. Mech., 26, 1-12. https://doi.org/10.1016/S0167-8442(96)00028-6.
  29. Naboulsi, S. and Mall, S. (1998), "Nonlinear analysis of bonded composite patch repair of cracked aluminum panels", Compos. Struct., 41, 303-313. https://doi.org/10.1016/S0263-8223(98)00052-X.
  30. Rezgani, L., Madani, K., Mokhtari, M., Feaugas, X., Cohendoz, S., Touzain, S. and Mallarino, S. (2018), "Hygrothermal ageing effect of ADEKIT A140 adhesive on the J-integral of a plate repaired by composite patch", J. Adhes. Sci. Technol., 32(13), 1393-1409. http://doi.org/10.1080/01694243.2017.1415790.
  31. Shih, C.F., Moran, B. and Nakamura, T. (1986), "Energy release rate along a three dimensional crack front in a thermally stressed body", Int. J. Fract., 30, 79-102. https://doi.org/10.1007/BF00034019.
  32. Tenchev, R.T. and Falzon, B.G. (2008), "An experimental and numerical study of the static and fatigue performance of a composite adhesive repair", Key Eng. Mater., 383, 25-34. https://doi.org/10.4028/www.scientific.net/KEM.383.25.
  33. Tiwari, N. and Shaikh, A.A. (2022), "Effect of size and surface area of graphene nanoplatelets on the thermomechanical and interfacial properties of shape memory multiscale composites", Technol. Mater., 61(12), 1334-1346.
  34. Tiwaria, N., Shaikha, A.A. and Malekb, N.I. (2022), "Modification of the multiphase shape memory composites with functionalized graphene nanoplatelets: Enhancement of thermomechanical and interfacial properties", Mater. Today Chem., 24, 100826. https://doi.org/1010a/j.mtchem.2022.100826. 1010a/j.mtchem.2022.100826
  35. Wang, H.W., Zhou, H.W., Gui, L.L., Ji, H.W. and Zhang, X.C. (2014), "Analysis of effect of fiber orientation on Young's modulus for unidirectional fiber reinforced composites", Compos. Part B: Eng., 56, 733-739. https://doi.org/10.1016/j.compositesb.2013.09.020.
  36. Xiong, Y. and Raizenne, D. (1996), "Stress and failure analysis of bonded composite-to-metal joints", Bolted/Bonded Joints in Polymeric Composites.
  37. Zarrinzadeh, H., Kabir, M.Z. and Deylami, A. (2017), "Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading", Thin Wall. Struct., 112, 140-148. http://doi.org/10.1016/j.tws.2016.12.023.