• 제목/요약/키워드: adhesion force

검색결과 475건 처리시간 0.03초

Cu CMP중 BTA에 의한 Particle의 흡착에 관한 연구 (Effect of Corrosion inhibitor, Benzotriazole (BTA), on Particle Adhesion in Cu CMP)

  • 송재훈;홍의관;김태곤;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.366-367
    • /
    • 2005
  • The effect of benzotriazole (BTA) on the adhesion force of silica and pad particle on Cu/TEOS wafer surfaces was investigated with and without the addition of BTA. Cu-BTA had the isoelectric point (IEP) at around pH 4$\sim$8. Pad particles were more positive zeta potentials than silica. The adhesion force initially decreased of silica and pad particle on Cu surfaces when BTA was added. However, the more BTA was added, the more adhesion force gradually increased with the increase of BTA concentrations. Then the adhesion force of pad particle was higher than silica. And TEOS didn't resulted increasing adhesion force like Cu when BTA was added in DI water.

  • PDF

백터제어 전동차의 재점착 성능개선에 관한 연구 (Re-adhesion control performance improvement for a vector controlled electric motor coach)

  • 변윤섭;이병송;한경희;배창한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1455-1460
    • /
    • 2004
  • In electric motor coaches, when the adhesion force coefficient between rail and driving wheel decreases suddenly, the electric motor coach has slip phenomena. The characteristics of adhesion force coefficient is strongly affected by the conditions between rails and driving wheels, such as moisture, dust, and oil on the rails and so on. This paper proposes the vector control structure for the improved re-adhesion control with paralleled control of induction motors under the sudden variation of the adhesion force coefficient.

  • PDF

Surface energy assisted gecko-inspired dry adhesives

  • Rahmawan, Yudi;Kim, Tae-Il;Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon;Suh, Kahp-Yang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.449-449
    • /
    • 2011
  • We reported the direct effect of intrinsic surface energy of dry adhesive material to the Van der Waals and capillary forces contributions of the total adhesion force in an artificial gecko-inspired adhesion system. To mimic the gecko foot we fabricated tilted nanohairy structures using both lithography and ion beam treatment. The nanohairy structures were replicated from Si wafer mold using UV curable polymeric materials. The control of nanohairs slanting angles was based on the uniform linear argon ion irradiation to the nanohairy polymeric surface. The surface energy was studied utilizing subsequent conventional oxygen ion treatment on the nanohairy structures which resulted in gradient surface energy. Our shear adhesion test results were found in good agreement with the accepted Van der Waals and capillary forces theory in the gecko adhesion system. Surface energy would give a direct impact to the effective Hamaker constant in Van der Waals force and the filling angle (${\varphi}$) of water meniscus in capillary force contributions of gecko inspired adhesion system. With the increasing surface energy, the effective Hamaker constant also increased but the filling angle decreased, resulting in a competition between the two forces. Using a simple mathematical model, we compared our experimental results to show the quantitative contributions of Van der Waals and capillary forces in a single adhesion system on both hydrophobic and hydrophilic surfaces. We found that the Van der Waals force contributes about 82.75% and 89.97% to the total adhesion force on hydrophilic and hydrophobic test surfaces, respectively, while the remaining contribution was occupied by capillary force. We also showed that it is possible to design ultrahigh dry adhesive with adhesion strength of more than 10 times higher than apparent gecko adhesion force by controlling the surface energy and the slanting angle induced-contact line of dry adhesive the materials.

  • PDF

축소 점착시험기를 이용한 휠/레일의 점착계수 추정에 관한 연구 (Estimation Study on the Wheel/Rail Adhesion Coefficient of Railway Vehicles Using the Scaled Adhesion Tester)

  • 김민수;김경희;권석진
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.603-609
    • /
    • 2015
  • Railway vehicles driven by wheels obtain force required for propulsion and braking by adhesive force between wheels and rails, this adhesive force is determined by multiplying adhesion coefficient of the friction surface by the applied axle load. Because the adhesion coefficient has a peak at certain slip velocity, it is important to determine the maximum values of the friction coefficient on the contact area. But this adhesive phenomenon is not clearly examined or analyzed. Thus we have developed new test procedure using the scaled adhesion test-bench for analyzing of the adhesion coefficient between wheel and rail. This adhesion test equipment is an experimental device that contacts mutually with twin disc which are equivalent to wheels and rails of railway vehicles.

HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향 (Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Nano-scale adhesion and friction on Si wafer with the tip size using AFM

  • R. Arvind Singh;Yoon, Eui-Sung;Oh, Hyun-Jin;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2004
  • Nano-scale studies on adhesion and friction were conducted in Si-wafer (100) using Atomic Force Microscopy (AFM). Glass (Borosilicate) balls of radii 0.32$\mu\textrm{m}$, 1.25$\mu\textrm{m}$, and 2.5$\mu\textrm{m}$, mounted on cantilever (Contact Mode type NPS) were used as tips. Adhesion and friction between Si-wafer and glass tips were measured at ambient temperature (24${\pm}$1$^{\circ}C$) and humidity (45${\pm}$5%). Friction was measured as a function of applied normal load in the range of 0-160 nN. Results showed that, both adhesion and friction increased with the tip radii. Also, friction increased linearly as a function of applied normal load. The effect of tip size on adhesion and friction was explained as the influence of the capillary force exerted by meniscus and that of the contact area on these parameters respectively. The coefficient of friction was estimated in two different ways, as the slope from the plot of friction force against the applied normal load and as the ratio between the friction force and the applied normal load. Both these estimates showed that the coefficient of friction increased with the tip size. Further, the influence of the adhesion force on the coefficient of friction was also discussed.

비접촉 방식 레이저 프린터 현상롤러 위에 부착된 마이크로 토너 입자의 부착힘 측정 (Measurements of Adhesion Force of Micro-Sized Toner Particles Deposited on the Developing Roller Surface in a Non-contact type Laser Printer)

  • 김상윤;이대영;신서원;은종문;황정호
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.105-110
    • /
    • 2006
  • Study for toner adhesion is 3non as an important role in electrophotography. In this research, a centrifugal detachment method was used to measure the adhesion force of several hundred particles simultaneously and to determine its sensitivity to particle size. For uncharged toner particles, we estimated the van der Waals force based on the centrifugal force experiments. Then for charged toner particles, the centrifugal force experiments were carried out. The difference between the results for charged toner particles and the results for uncharged toner particles was compared with the image force calculated from a model which assumed that the toner charge was located at the center of the particle. In the calculations, experimental data obtained by E-SPART (Electrical-Single Particle Aerodynamic Relaxation Time) analyzer were used. The adhesion force of micro-sized toner particles deposited on the DR surface was found to be approximately $1{\sim}3$ nN.

  • PDF

원자력현미경을 이용한 나노임프린트 재료의 접착력 측정 (Adhesion Force Measurements of Nano-Imprint Materials Using Atomic Force Microscope)

  • 윤형석;이몽룡;송기국
    • 폴리머
    • /
    • 제38권3호
    • /
    • pp.358-363
    • /
    • 2014
  • 원자력현미경(AFM) tip을 표면 처리하여 임프린트용 acrylate 레진과의 접착력을 측정하였다. 표면 처리를 하지 않은 실리콘 tip에 비하여 $CH_4$ 플라즈마로 소수성 처리한 경우 접착력은 38% 감소한 반면 친수성의 $O_2$ 플라즈마로 처리한 경우에는 접착력이 1.6 배 증가하였다. 이러한 AFM 결과들은 정성적 실험 결과 밖에 얻을 수 없는 cross-cut 접착실험에 비하여 매우 구체적인 정량적 결과들을 제공하였다. 나노 크기의 임프린트 패턴을 전사하는 경우, 몰드와 레진 사이 접촉 면적이 커져서 시료 전체의 접착력이 커지기 때문에 패턴 크기가 작아지는 나노임프린트 공정에서는 몰드 표면 처리 문제가 더욱 중요하게 되는 것을 알 수 있었다.

전자 종이용 하전 입자의 부착력 분석 (Adhesion Force Analysis of Charged Particles for the E-paper)

  • 김승택;김형태;이상호;김종석
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.87-91
    • /
    • 2010
  • Charged micro-particles are widely used as the key components for many electrical applications such as an e-paper, a touch panel, a printer toner and an electronic ink. Among them, the e-paper is an emerging reflective type display using the charged particles that has the advantages of the extremely low power consumption and sunlight readability. To create images on the e-paper, we confine black positively-charged and white negatively-charged particles between bottom and top electrodes and selectively apply the electric field. When the Coulomb force by an applied electric field is greater than the adhesion force between the charged particle and the electrode, the particles' transition happens resulting in the change of color between black and white. Therefore, the adhesion force is a very important factor for designing and estimating e-paper's operation. In this study, we constructed a basic model for particle's transition and an adhesion force equation describing particle's transition with three different forces: electrostatic image force, Van der Waals force and gravitational force. The simulation results showed that the gravitational force is negligible for the interesting range for the charge and the radius, and the adhesion force can be strongly dependent on the particle's charge and radius.

고탄성 고분해능을 갖는 응착력 측정장치의 개발 (Development of Adhesion Force Measurement Apparatus with High Stiffness and High Resolution)

  • 김규성;윤준호
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.140-146
    • /
    • 2007
  • To understand adhesive phenomena, we need to get force curve between two surfaces. And it is said that high stiffness force analysis system is needed to get precise force curve and more information of the surfaces. Usually the stiffness of the force measurement system is under the order of 10N/m. The stiffer force measurement system, however, results in more information on the surface, because higher stiffness lead to the wider range of force curves, secondly because the force curve obtained through the stiffer one describes more precise relationship between relative tip-sample separation and interaction force. In this paper, considering for stiffness and resolution, the cantilever was designed and we made adhesion force measurement apparatus with high stiffness and high resolution, so we measured adhesive force between Ag-ball and wafer.