Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.3.358

Adhesion Force Measurements of Nano-Imprint Materials Using Atomic Force Microscope  

Yun, Hyeong Seuk (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Lee, Mongryong (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Song, Kigook (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Publication Information
Polymer(Korea) / v.38, no.3, 2014 , pp. 358-363 More about this Journal
Abstract
Adhesion forces between acrylate imprinting resin and a surface treated atomic force microscope (AFM) tip were investigated. Compared to the untreated silicon tip, 38% of the adhesion force is reduced for the hydrophobic tip treated with $CH_4$ plasma whereas 1.6 time increases is found for the hydrophilic tip with $O_2$ plasma treatment. Such a measurement of the adhesion force using AFM provides very quantitative results on adhesion comparing to the crosscut adhesion test which gives qualitative results. Since the adhesion area becomes larger as the imprinting pattern size gets smaller, the surface treatment issue becomes more important in the nano-imprinting process.
Keywords
atomic force microscope (AFM); adhesion force; nano-pattern; imprinting; surface treatment;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. C. Chen and C. H. Chen, Opt. Rev., 16, 416 (2009).   DOI
2 S. E. Lee, H. G. Lim, S. S. Lee, D. G. Choi, D. Lee, and S. U. Hong, Macromol. Res., 21, 916 (2013).   DOI
3 C. W. Lee, B. K. Song, J. Jegal, and Y. Kimura, Macromol. Res., 21, 1305 (2013).   DOI
4 W. C. Wask, Polymer, 19, 291 (1978).   DOI
5 A. Schirmeisen, D. Weiner, and H. Fuchs, Surf. Sci., 545, 155 (2003).   DOI
6 M. Arif Butt, A. Chughtai, J. Ahmad, R. Ahmad, U. Majeed, and I. H. Khan, J. Faculty. Eng. Tech., 15, 21 (2008).
7 D. Morihara, H. Hiroshima, and Y. Hirai, Microelectron. Eng., 86, 684 (2009).   DOI
8 S. Thoms, D. S. Macintyre, D. Moran, and I. Thayne, J. Vac. Sci. Technol. B, 22, 3271 (2004).   DOI
9 H. C. Scheer, H. Schulz, T. Hoffmann, and C. M. Sotomayer Torres, J. Vac. Sci. Technol. B, 16, 3927 (1998).
10 T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B, 18, 3575 (2000).
11 Y. Hirai, N. Takagi, S. Harada, and Y. Tanaka, Sens. Micromach. Soc., 122, 404 (2002).
12 H. Scheer, H. Schultz, T. Holffmann, and C. Torres, J. Vac. Sci. Technol. B, 16, 3917 (1998).   DOI
13 J. Jeong, Y. Sim, H. Sohn, and E. Lee, Microelectron. Eng., 75, 5299 (2006).
14 J. Haisma, M. Verheijen, and K. Heuvel, J. Vac. Sci. Technol. B, 14, 4124 (1996).   DOI   ScienceOn
15 M. Austin, H. Ge, W. Wu, M. Li, and Z. Yu, Appl. Phys. Lett., 84, 5229 (2004).
16 S. Kim, S. Park, S. Moon, W. Lee, and K. Song, Polymer(Korea), 36, 536 (2012).
17 J. P. Cleveland and S. Manne, Rev. Sci. Instrum., 64, 403 (1993).   DOI
18 Y. Hirai, S. Yoshida, and Y. Tanaka, J. Vac. Sci. Technol. B, 21, 2765 (2003).   DOI   ScienceOn
19 G. Y. Jung, W. Wu, Z. Li, Y. Chen, S. Y. Wang, W. M. Tong, and R. S. Williams, Langmuir, 21, 1158 (2005).   DOI   ScienceOn
20 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995).   DOI   ScienceOn
21 D. Choi, J. Jeong, Y. Sim, E. Lee, W. Kim, and B. Bea, Langmuir, 21, 9390 (2005).   DOI   ScienceOn
22 Vladimir V. Tsukruk and Valery N. Bliznyuk, Langmuir, 14, 446 (1998).   DOI