• Title/Summary/Keyword: address matching

Search Result 128, Processing Time 0.021 seconds

Constraints on cosmology and baryonic feedback by the combined analysis of weak lensing and galaxy clustering with the Deep Lens Survey

  • Yoon, Mijin;Jee, M. James;Tyson, Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2018
  • We constrain cosmological parameters by combining three different power spectra measured from galaxy clustering, galaxy-galaxy lensing, and cosmic shear using the Deep Lens Survey (DLS). Two lens bins (centered at z~0.27 and 0.54) and two source bins (centered at z~0.64, and 1.1) containing more than one million galaxies are selected to measure the power spectra. We re-calibrate the initial photo-z estimation of the lens bins by matching with SHELS and PRIMUS and confirm its fidelity by measuring a cross-correlation between the bins. We also check the reliability of the lensing signals through the null tests, lens-source flipping and cross shear measurement. Residual systematic errors from photometric redshift and shear calibration uncertainties are marginalized over in the nested sampling during our parameter constraint process. For the flat LCDM model, we determine S_8=sigma_8(Omega_m/0.3)^0.5=0.832+-0.028, which is in great agreement with the Planck data. We also verify that the two independent constraints from the cosmic shear and the galaxy clustering+galaxy-galaxy lensing measurements are consistent with each other. To address baryonic feedback effects on small scales, we marginalize over a baryonic feedback parameter, which we are able to constrain with the DLS data alone and more tightly when combined with Planck data. The constrained value hints at the possibility that the AGN feedback in the current OWLS simulations might not be strong enough.

  • PDF

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Developing a Drawing Template for BIM software to Improve BIM-based Drawing Work Efficiency in the Construction Document Phase (실시설계단계 BIM 기반 도면 작업 효율 향상을 위한 도면화 템플릿 개발)

  • Kim, Yi-Je;Kim, In-Chie;Chin, Sang-Yoon
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.98-109
    • /
    • 2020
  • Based on the prior research which developed the consistency review checklist of the BIM model and 2D drawing through the drawing analysis of the construction documents phase, the apparent limits of the existing template and the template development items were derived. As well, the BIM-based drawing templates of the construction documentation phase were developed and verified using ArchiCAD BIM software. The developed template was then applied to the actual project model in the construction documents phase, and, as a result, 50% of existing work elements could be utilized as templates. This is an increase of more than 30% over the existing template utilization elements, and it is analyzed to be effective in practical application and utilization. Based on the results of this study, if the BIM model construction criteria matching the drawing's utilization purpose are presented, while at the same time the BIM data interlocking and drawing template development studies are conducted, the utilization of BIM data can be maximized and additional drawing work can be minimized to increase the percentage of template utilization elements. In addition, it is believed that this can employed to address functional and institutional problems of BIM-based drawing and make a contribution to the activation of BIM.

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF

Georeferencing for BIM and GIS Integration Using Building Boundary Polygon (BIM과 GIS 통합을 위한 건물 외곽 폴리곤 기반 Georeferencing)

  • Jwa, Yoon-Seok;Lee, Hyun-Ah;Kim, Min-Su;Choi, Jung-Sik
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.30-38
    • /
    • 2023
  • Building Information Models(BIM) provides rich geometric and attribute information throughout the entire life cycle of a building and infrastructure object, while Geographic Information System(GIS) enables the detail analysis of urban issues based on the geo-spatial information in support of decision-making. The Integration of BIM and GIS data makes it possible to create a digital twin of the land in order to effectively manage smart cities. In the perspective of integrating BIM data into GIS systems, this study performs literature reviews on georeferencing techniques and identifies limitations in carrying out the georeferencing process using attribute information associated with absolute coordinates probided by Industry Foundation Classes(IFC) as a BIM standard. To address these limitations, an automated georeferencing process is proposed as a pilot study to position a IFC model with the Local Coordinate System(LCS) in GIS environments with the Reference Coordinate System(RCS). An evaluation of the proposed approach over a BIM model demonstrates that the proposed method is expected to be a great help for automatically georeferencing complex BIM models in a GIS environment, and thus provides benefits for efficient and reliable BIM and GIS integration in practice.

Strengthening security structure of open Blockchain platform to enhance privacy protection of DApp users (DApp 사용자의 프라이버시 보호 강화를 위한 공개형 블록체인 플랫폼 보안구조 강화방안)

  • Hwang, Seonjin;Ko, DongHyun;Bahk, Taeu;Choi, Yoon-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • Along with the growth of Blockchain, DApp (Distributed Application) is getting attention. As interest in DApp grows, market size continues to grow and many developers participate in development. Many developers are using API(Application Programming Interface) services to mediate Blockchain nodes, such as Infura, for DApp development. However, when using such a service, there is a serious risk that the API service operator can violate the user's privacy by 1 to 1 matching the account address of the Transaction executed by the DApp user with the IP address of the DApp user. It can have an adverse effect on the reliability of public Blockchains that need to provide users with a secure DApp service environment. The proposed Blockchain platform is expected to provide user privacy protection from API services and provide a reliable DApp use environment that existing Blockchain platforms did not provide. It is also expected to help to activate DApp and increase the number of DApp users, which has not been activated due to the risk of an existing privacy breach.

A simulation study for various propensity score weighting methods in clinical problematic situations (임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구)

  • Siseong Jeong;Eun Jeong Min
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.381-397
    • /
    • 2023
  • The most representative design used in clinical trials is randomization, which is used to accurately estimate the treatment effect. However, comparison between the treatment group and the control group in an observational study without randomization is biased due to various unadjusted differences, such as characteristics between patients. Propensity score weighting is a widely used method to address these problems and to minimize bias by adjusting those confounding and assess treatment effects. Inverse probability weighting, the most popular method, assigns weights that are proportional to the inverse of the conditional probability of receiving a specific treatment assignment, given observed covariates. However, this method is often suffered by extreme propensity scores, resulting in biased estimates and excessive variance. Several alternative methods including trimming, overlap weights, and matching weights have been proposed to mitigate these issues. In this paper, we conduct a simulation study to compare performance of various propensity score weighting methods under diverse situation, such as limited overlap, misspecified propensity score, and treatment contrary to prediction. From the simulation results overlap weights and matching weights consistently outperform inverse probability weighting and trimming in terms of bias, root mean squared error and coverage probability.

Shade comparative analysis of natural tooth measured by visual and spectrophotometric methods (육안과 분광 측정기를 이용한 자연 치아의 색조비교분석)

  • Kim, Bum-Suk;Shin, Soo-Yeon;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.443-454
    • /
    • 2008
  • Statement of problem: A clinically successful color match is one of the important factor to get an esthetic dental restoration. Dental shade guides are commonly used to evaluate tooth color in restorative procedure. But numerous reports have indicated that common shade guides do not provide sufficient spectral coverage of the natural tooth colors. To address issues associated with the shade guide, distinct avenues have been pursued objective spectrophotometric / colorimetric assessment. Purpose: This study compared the accuracy of tooth color selection of spectrophotometer with that of human visual determination. Three main factors were investigated, namely, the effect of light, the individual variation and the experience of the observer. Material and methods: At the first experiment, on ten patients, one operator independently selected the best matching shade to the unrestored maxillary central incisor, using a Vita Classical Shade Guide in the morning, at noon and in the afternoon. The same teeth were measured by means of a reflectance spectrophotometer. At the second experiment, on ten patients, ten operators (5 experts, 5 novices) selected and measured by the same method above at noon. At the third experiment, the results of the second experiment were divided into two groups, expert and novice, and analyzed. Results: 1. There was significant difference between visual and spectrophotometric assessment (mean ${\Delta}E$ values) in experiment 1, 2, 3 (P < .05). 2. There was no significant difference between experts and novices group, when comparing with each visual and spectrophotometric assessment (mean ${\Delta}E$ values). Conclusion: Spectrophotometer could be used to analyze the shade of natural tooth objectively. Thereby, this method offers the potential tominimize considerably the need for corrections or even remakesafter intraoral try-in of restoration. Furthermore, to achieve its advantage, both the shade-matching environment and communication between dentist and technician should be optimized with use of visual and instrumental shade-matching systems.

A Study about Improvement of Web-based Diagnosis-Supplement System Interface for basic academic competencies based on Affordance Theory (어포던스 이론에 근거한 기초학력 진단-보정 시스템의 사용자 인터페이스 개선 연구)

  • Hwang, YunJa;Cha, Hyun-jin
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.71-81
    • /
    • 2017
  • The purpose of this study was to identify affordance usability problems and to improve an interface on the Web-based Diagnosis-Supplement system from learner's perspective in order to promote to be utilized as an user-friendly system. To address those goals, user testings with 6 students from 4th grade of the primary school and 3rd grade of the middle school were conducted and the firstly improved prototypes were suggested. Then, the suggested prototypes were reviewed by experts and finalized. This study has an implication on the methodology of the usability study by evaluating the system through the Hartson's 3 affordance theory. In addition, it contributes to improving pedagogical effects by the fixing serious affordance usability problems related to main tasks of the system such as the test questions and score visualization and matching between system and real world.