• Title/Summary/Keyword: additive white Gaussian noise

Search Result 347, Processing Time 0.023 seconds

Limit of the maximum Signal Levels from other Radio Noise and interference of the Reciving Signal (외부잡음의 수신신호에 미치는 영향과 최악조건의 한계)

  • 김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.5 no.1
    • /
    • pp.34-39
    • /
    • 1980
  • This paper discribes a effect of Radio signals in Noise and Interference for the Communication systems and Generation of diffusion Noise from the Solid state Devices, and in Jection it to the Radio Reciving systems for probability of Signal Detection. The error performance depends on level of the Noise spectral density by Random processes between average signal energy. This experimental result are given by the performance of the correlation receiver for detecting Completely known signals in additive white Gaussian Noise.

  • PDF

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning (딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거)

  • Sun, Young-Ghyu;Hwang, Yu-Min;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

Distance Weighted Filter based on Standard Deviation Distribution for AWGN Removal (AWGN 제거를 위한 표준편차 기반의 거리가중치 필터)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.118-120
    • /
    • 2021
  • In modern society, with the development of IoT technology, various digital equipment is being distributed in a wide range of fields such as CCTV and exploration robots. Accordingly, the importance of data processing is increasing, and various studies are being conducted to remove noise generated in the process of receiving data in the imaging field. Representative noise includes additive white Gaussian noise (AWGN), and existing filters for removing noise include an average filter (AF), an alpha trimmed average filter (A-TAF), and a median filter (MF). However, existing filters have a disadvantage in that they show somewhat insufficient performance in noise removal characteristics in high frequency areas. Therefore, in this paper, in order to effectively remove AWGN existing in the high frequency region, a weight filter according to a distance based on the standard deviation is proposed.

  • PDF

Modified Gaussian Filter based on Fuzzy Membership Function for AWGN Removal in Digital Images

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2021
  • Various digital devices were supplied throughout the Fourth Industrial Revolution. Accordingly, the importance of data processing has increased. Data processing significantly affects equipment reliability. Thus, the importance of data processing has increased, and various studies have been conducted on this topic. This study proposes a modified Gaussian filter algorithm based on a fuzzy membership function. The proposed algorithm calculates the Gaussian filter weight considering the standard deviation of the filtering mask and computes an estimate according to the fuzzy membership function. The final output is calculated by adding or subtracting the Gaussian filter output and estimate. To evaluate the proposed algorithm, simulations were conducted using existing additive white Gaussian noise removal algorithms. The proposed algorithm was then analyzed by comparing the peak signal-to-noise ratio and differential image. The simulation results show that the proposed algorithm has superior noise reduction performance and improved performance compared to the existing method.

A Study on Improved Denoising Algorithm for Edge Preservation in AWGN Environments (AWGN환경에서 에지보호를 위한 개선된 잡음제거 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1773-1778
    • /
    • 2012
  • Nowadays, the high quality of image is required with the demand for digital image processing devices is rapidly increasing. But image always damaged by many kinds of noises and it is necessary to remove noise and the denoising becomes one of the most important fields. In many cases image is corrupted by AWGN(additive white Gaussian noise). In this paper, we proposed an improved denoising algorithm with edge preservation. The proposed algorithm averages values processed by spatial weighted filter and self adaptive weighted filter. Then we add the value which is computed by the equation considering variance of mask and the estimated noise variance. Through the experience, the proposed filter performs well on noise suppression and edge preservation properties and improves the image visual quality.

A Filter Algorithm using Standard Deviation in AWGN Environment (AWGN 환경에서 표준편차를 이용한 필터 알고리즘)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.936-939
    • /
    • 2015
  • Recently, the image processing is utilized in various fields and many studies on the image restoration have been carried out in order to remove the noise occurring in the process of data transmission, processing and storage. There are many types of noises added to the image according to the cause and shape, and AWGN(additive white Gaussian noise) is one of typical noises. This paper proposed an algorithm which applies the weighting of filter differently according to the standard deviation in order to alleviate AWGN added to the image, and compared this algorithm with the current methods using PSNR(peak signal to noise ratio) as a criterion of judgment.

  • PDF

Evaluation of Robust Classifier Algorithm for Tissue Classification under Various Noise Levels

  • Youn, Su Hyun;Shin, Ki Young;Choi, Ahnryul;Mun, Joung Hwan
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.87-96
    • /
    • 2017
  • Ultrasonic surgical devices are routinely used for surgical procedures. The incision and coagulation of tissue generate a temperature of $40^{\circ}C-150^{\circ}C$ and depend on the controllable output power level of the surgical device. Recently, research on the classification of grasped tissues to automatically control the power level was published. However, this research did not consider the specific characteristics of the surgical device, tissue denaturalization, and so on. Therefore, this research proposes a robust algorithm that simulates noise to resemble real situations and classifies tissue using conventional classifier algorithms. In this research, the bioimpedance spectrum for six tissues (liver, large intestine, kidney, lung, muscle, and fat) is measured, and five classifier algorithms are used. A signal-to-noise ratio of additive white Gaussian noise diversifies the testing sets, and as a result, each classifier's performance exhibits a difference. The k-nearest neighbors algorithm shows the highest classification rate of 92.09% (p < 0.01) and a standard deviation of 1.92%, which confirms high reproducibility.

A Study on Composite Filter for AWGN Removal (AWGN 제거를 위한 합성 필터에 관한 연구)

  • Kwon, Se-Ik;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.684-686
    • /
    • 2017
  • Currently, image processing is used in various fields including military, medical and industrial fields. Noise added to images undermine the quality of images. As such, the removal of noise is an essential step to process images such as through recognition of images, detection of edge and segmentation of images. Studies on removing noise from images are actively being undertaken. One of the leading noises that are added to images is the AWGN(additive white Gaussian noise). This paper suggests an algorithm that synthesizes a filter that uses edge detection and standard deviation to ease AWGN.

  • PDF

A Study on AWGN Removal using Edge Detection (에지 검출을 이용한 AWGN 제거에 관한 연구)

  • Kwon, Se-Ik;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.956-958
    • /
    • 2016
  • Currently, image processing has been widely utilized and the noise may be occurred in the processes of image data transmission, processing, and storage. The studies have been actively conducted to eliminate the added noise in the image. The types of noise in the image are various depending on the causes and the forms, and additive white Gaussian noise(AWGN) is the representative one. The algorithm to apply and process the weighted value was suggested by the directions of the pixel in the local mask using edge detection to relieve the added AWGN in the image in this article.

  • PDF

Implementation of Digital Filter for Additive White Gaussian Noise Removal (부가 백색 가우스 잡음 제거를 위한 디지털 필터 구현)

  • Cheon, Bong-Won;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.473-476
    • /
    • 2017
  • As the society has developed into a digital information age society, a lot of electronic communication equipments are popularized. However, there are various causes of noise during signal transmission between communication devices. The noise generated in the communication system is a white noise that is distributed evenly in all frequency bands. This white noise causes system errors and lowers reliability. Therefore, in this paper, the existing Gaussian filter, Median filter, Alpha trimmed mean filter, and min/max filter for removing white noise are described and the characteristics and performance of each filter are compared with each other.

  • PDF