DOI QR코드

DOI QR Code

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning

딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거

  • Received : 2018.06.27
  • Accepted : 2018.08.10
  • Published : 2018.08.31

Abstract

This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

본 논문은 전력선 통신에서 딥 러닝 기술 적용시킨 연구의 초기 결과를 보여준다. 본 논문에서는 전력선 통신의 성능을 감소시키는 원인인 잡음을 제거하기 위해 딥 러닝 기술을 적용시켜 효과적인 잡음 제거를 목표로 하고 수신 단에서 딥 러닝 모델을 추가하여 잡음을 효과적으로 제거하는 시스템을 제안한다. 딥 러닝 모델을 학습시키기 위해서는 데이터가 필요하므로 기존의 데이터들을 저장하고 있다고 가정하고 제안하는 시스템에 대해 시뮬레이션을 진행하여 부가 백색 가우시안 잡음 채널의 이론적 결과와 비트 에러률을 비교하여 제안하는 시스템 모델이 잡음을 제거하여 통신 성능을 향상시킨 것을 확인한다.

Keywords

References

  1. J. H. Kim and H. B. Lee, "Market trends and prospects for power line communication," in Proc. Information and Communication Equipment, pp. 573-578, Aug, 2008.
  2. D. K. Kang, "Deep learning based machine learning technology trends," ITFIND-Weekly Technology Trends, vol. 1742, pp. 12-24, Apr. 2016.
  3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst. , pp. 1097-1105, 2012. DOI : https://doi.org/10.1145/3065386
  4. K. Cho,"Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation,"2014 [Online]. Available: http://arxiv.org/abs/1406.1078 DOI : https://doi.org/10.3115/v1/d14-1179
  5. C. Weng, D. Yu, S. Watanabe, and B.H. F. Juang, "Recurrent deep neural networks for robust speech recognition," in Proc. ICASSP, Florence, Italy, pp. 5532-5536, May 2014. DOI : https://doi.org/10.1109/icassp.2014.6854661
  6. J. Schmidhuber, "Deep learning in neural networks: An overview,"Neural Netw., vol. 61, pp. 85-117, Jan. 2015. DOI : https://doi.org/10.1016/j.neunet.2014.09.003
  7. H. Ye, G. Y. Li, and B. H. Juang "Power of deep learning for channel estimation and signal detection in OFDM systems,"IEEE Wireless Communications Letters, vol. 7, pp. 114-117, Feb. 2018. DOI :https://doi.org/10.1109/lwc.2017.2757490
  8. D. P. Kingma, and J. L. Ba "Adam : a method for stochastic optimization,"in Proc. ICLR 2015, pp. 1-15, San Diego ,May. 2015. DOI:https://doi.org/10.1002/9780470061602.eqf13013
  9. L. D. Bert, P. Caldera, D. Schwingshack, and A. M. Tonello "On noise modeling for power line communications,"in Proc. 2011 IEEE international Symposium on Power Line Communications and Its Applications, pp. 283-288, Udine, Italy, May 2011. DOI :https://doi.org/10.1109/isplc.2011.5764408
  10. D. H. Na, and D. H. Ryu, "Development of time information broadcasting system using power line communication,"The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), vol. 12, no. 1, pp. 217-223, Feb. 2012. DOI : https://doi.org/10.7236/jiwit.2012.12.1.217
  11. H. S. Cho, "Direct-band spread system for neural network with interference signal control," Measurement of Intrusion Prevention System," Journal of the Korea Academia-Industrial cooperation Society(JKAIS), vol. 14, no. 3, pp. 1372-1377, Mar. 2013. DOI :https://doi.org/10.5762/kais.2013.14.3.1372