• Title/Summary/Keyword: additive preserver

Search Result 5, Processing Time 0.016 seconds

THE APPLICATIONS OF ADDITIVE MAP PRESERVING IDEMPOTENCE IN GENERALIZED INVERSE

  • Yao, Hongmei;Fan, Zhaobin;Tang, Jiapei
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.541-547
    • /
    • 2008
  • Suppose R is an idempotence-diagonalizable ring. Let n and m be two arbitrary positive integers with $n\;{\geq}\;3$. We denote by $M_n(R)$ the ring of all $n{\times}n$ matrices over R. Let ($J_n(R)$) be the additive subgroup of $M_n(R)$ generated additively by all idempotent matrices. Let ($D=J_n(R)$) or $M_n(R)$. In this paper, by using an additive idem potence-preserving result obtained by Coo (see [4]), I characterize (i) the additive preservers of tripotence from D to $M_m(R)$ when 2 and 3 are units of R; (ii) the additive preservers of inverses (respectively, Drazin inverses, group inverses, {1}-inverses, {2}-inverses, {1, 2}-inverses) from $M_n(R)$ to $M_n(R)$ when 2 and 3 are units of R.

  • PDF

ADDITIVE OPERATORS PRESERVING RANK-ADDITIVITY ON SYMMETRY MATRIX SPACES

  • Tang, Xiao-Min;Cao, Chong-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.115-122
    • /
    • 2004
  • We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. Let $S_{n}(F)$ be the space of all $n\;\times\;n$ symmetry matrices over a field F with 2, $3\;\in\;F^{*}$, then T is an additive injective operator preserving rank-additivity on $S_{n}(F)$ if and only if there exists an invertible matrix $U\;\in\;M_n(F)$ and an injective field homomorphism $\phi$ of F to itself such that $T(X)\;=\;cUX{\phi}U^{T},\;\forallX\;=\;(x_{ij)\;\in\;S_n(F)$ where $c\;\in;F^{*},\;X^{\phi}\;=\;(\phi(x_{ij}))$. As applications, we determine the additive operators preserving minus-order on $S_{n}(F)$ over the field F.

LINEAR MAPS PRESERVING PAIRS OF HERMITIAN MATRICES ON WHICH THE RANK IS ADDITIVE AND APPLICATIONS

  • TANG XIAO-MIN;CAO CHONG-GUANG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.253-260
    • /
    • 2005
  • Denote the set of n ${\times}$ n complex Hermitian matrices by Hn. A pair of n ${\times}$ n Hermitian matrices (A, B) is said to be rank-additive if rank (A+B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered.

ADDITIVE MAPPINGS ON OPERATOR ALGEBRAS PRESERVING SQUARE ABSOLUTE VALUES

  • TAGHAVI, A.
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ denote the algebras of all bounded linear operators on Hilbert spaces $\mathcal{H}$ and $\mathcal{K}$, respectively. We show that if ${\phi}:\mathcal{B}(H){\rightarrow}\mathcal{B}(K)$ is an additive mapping satisfying ${\phi}({\mid}A{\mid}^2)={\mid}{\phi}(A){\mid}^2$ for every $A{\in}\mathcal{B}(H)$, then there exists a mapping ${\psi}$ defined by ${\psi}(A)={\phi}(I){\phi}(A)$, ${\forall}A{\in}\mathcal{B}(H)$ such that ${\psi}$ is the sum of $two^*$-homomorphisms one of which C-linear and the othere C-antilinear. We will also study some conditions implying the injective and rank-preserving of ${\psi}$.

  • PDF

DETERMINANT AND SPECTRUM PRESERVING MAPS ON Mn

  • Kim, Sang Og
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.285-291
    • /
    • 2012
  • Let $M_n$ be the algebra of all complex $n{\times}n$ matrices and ${\phi}:M_n{\rightarrow}M_n$ a surjective map (not necessarily additive or multiplicative) satisfying one of the following equations: $${\det}({\phi}(A){\phi}(B)+{\phi}(X))={\det}(AB+X),\;A,B,X{\in}M_n,\\{\sigma}({\phi}(A){\phi}(B)+{\phi}(X))={\sigma}(AB+X),\;A,B,X{\in}M_n$$. Then it is an automorphism, where ${\sigma}(A)$ is the spectrum of $A{\in}M_n$. We also show that if $\mathfrak{A}$ be a standard operator algebra, $\mathfrak{B}$ is a unital Banach algebra with trivial center and if ${\phi}:\mathfrak{A}{\rightarrow}\mathfrak{B}$ is a multiplicative surjection preserving spectrum, then ${\phi}$ is an algebra isomorphism.