DOI QR코드

DOI QR Code

DETERMINANT AND SPECTRUM PRESERVING MAPS ON Mn

  • Kim, Sang Og (Department of Mathematics Hallym University)
  • Received : 2012.06.26
  • Accepted : 2012.07.30
  • Published : 2012.09.30

Abstract

Let $M_n$ be the algebra of all complex $n{\times}n$ matrices and ${\phi}:M_n{\rightarrow}M_n$ a surjective map (not necessarily additive or multiplicative) satisfying one of the following equations: $${\det}({\phi}(A){\phi}(B)+{\phi}(X))={\det}(AB+X),\;A,B,X{\in}M_n,\\{\sigma}({\phi}(A){\phi}(B)+{\phi}(X))={\sigma}(AB+X),\;A,B,X{\in}M_n$$. Then it is an automorphism, where ${\sigma}(A)$ is the spectrum of $A{\in}M_n$. We also show that if $\mathfrak{A}$ be a standard operator algebra, $\mathfrak{B}$ is a unital Banach algebra with trivial center and if ${\phi}:\mathfrak{A}{\rightarrow}\mathfrak{B}$ is a multiplicative surjection preserving spectrum, then ${\phi}$ is an algebra isomorphism.

Keywords

References

  1. B. Aupetit and H. du T. Mouton, Spectrum preserving linear maps in Banach algebras, Studia Math. 109 (1994), 91-100. https://doi.org/10.4064/sm-109-1-91-100
  2. C.G. Cao and X. Zhang, Additive rank-one preserving surjections on symmetric matrix spaces, Linear Algebra Appl. 362 (2003), 145-151. https://doi.org/10.1016/S0024-3795(02)00494-9
  3. G. Dolinar and P. Semrl, Determinant preserving maps on matrix algebras, Lin- ear Algebra Appl. 348 (2002), 189-192. https://doi.org/10.1016/S0024-3795(01)00578-X
  4. G. Frobenius,  Uber die Darstellung der endlichen Gruppen durch lineare Substi- tutionen, Sitzungsber. Deutsch. Akad. Wissen. (1897), 994-1015.
  5. J. Hou and J. Cui, Additive maps on standard operator algebras preserving in- vertibility or zero divisors, Linear Algebra. Appl. 359 (2003), 219-233. https://doi.org/10.1016/S0024-3795(02)00419-6
  6. A.A. Jafarian and A.R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. https://doi.org/10.1016/0022-1236(86)90073-X
  7. M. Marcus and B.N. Moyls, Linear transforms on algebras of matrices, Canad. J. Math. 11 (1959), 61-66. https://doi.org/10.4153/CJM-1959-008-0
  8. W.S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698. https://doi.org/10.1090/S0002-9939-1969-0240129-7
  9. M. Omladic and P. Semrl, Spectrum-preserving additive maps, Linear Algebra Appl. 153 (1991), 67-72. https://doi.org/10.1016/0024-3795(91)90210-N
  10. M. Omladic and P. Semrl, Additive mappings preserving operators of rank one, Linear Algebra Appl. 182 (1993), 239-256. https://doi.org/10.1016/0024-3795(93)90502-F
  11. V. Tan and F. Wang, On determinant preserver problems, Linear Algebra Appl. 369 (2003), 311-317. https://doi.org/10.1016/S0024-3795(02)00739-5