• 제목/요약/키워드: adaptive updating

검색결과 150건 처리시간 0.022초

데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선 (Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme)

  • 김광준;장혁;석경휴;나상동
    • 정보보호학회논문지
    • /
    • 제9권4호
    • /
    • pp.11-22
    • /
    • 1999
  • LMS 적응필터는 많은 신호처리 응용분야에서 광범위하게 사용되고 있으나 반복 적 최소 자승 (RLS) 적응 필터와 비교해서 주어진 안정상태 평균 자승 에러에 대한 수렴특성이 떨어진 다. 본 논문은 LMS 알고리즘의 수렴속도를 향상시키기 위해 폐기된 탭 입력 데이터를 몇 개의 한정된 버퍼를 이용 탭 가중치를 적응적으로 조절하여 수렴특성을 개선한다. 컴퓨터 시뮬레이션 결과를 통해 스텝 크기 매 개변수 $\mu$값의 증가는 보다 빠른 수렴속도와 평균 자승에러를 감소시키는 효과를 가지므로 데이터 재순 환 버퍼 구조에서 탭 가중치의 갱신에 비례하여 평균 자승 에러의 수렴속도가 재순환 버퍼 B를 증가시 켜 수렴속도가 (B+1)배 만큼 증가한다. 데이터 버퍼 알고리즘을 이용한 제안된 TDL 필터가 LMS 알고 리즘과 동일한 수렴조건을 가지고 실행될 때 연산복잡성의 실질적 부담감을 배제하고 채널 간의 상호심 볼간섭을 보다 효율적으로 제어하면서 적응 횡단선 필터의 수렴속도를 증기시켜 개선한다.

화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구 (A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System)

  • 진세훈;이재희;강철호
    • 한국음향학회지
    • /
    • 제19권5호
    • /
    • pp.20-26
    • /
    • 2000
  • 화자 확인시스템에서 화자의 장기간 음성 변동에 대처하기 위해서는 작은 양의 데이터로써 화자 확인을 위한 HMM(hidden Markov model) 파라미터 갱신과 사전 문턱치 결정이 중요한 요소이다. 본 연구에서는 화자내 변이(mea-speaker variation)에 적응하는 모델 갱신방법과 이에 따른 문턱치 적응에 관한 방법을 제안한다. 제안하는 방법은 분기간 화자내 변이로 발생할 수 있는 오인식율을 Baum-Welch re-estimation을 통해 현재 화자 모델 파라미터에 새로운 음성 데이터를 적응시킴으로써 감소시킨다. 본 논문에서 제안하는 사전 문턱치 결정 방법은 기존의 월드 모델(world model) 방법과 군중 모델(cohort model) 방법의 하이브리드 형태로써 실험적으로 결정된다. 실험에 의해 모델 갱신을 하지 않은 경우보다 제안하는 모델 갱신방법의 화자 인식율이 우수함을 확인하였다. 또한, 사후 문턱치 결정에 의한 인식율과 제안한 사전 문턱치 결정에 의한 인식율의 차이가 근소함을 확인하였다.

  • PDF

적응 L-필터의 수렴성 해석 (Convergence Analysis of Adaptive L-Filter)

  • 김수용;배성호
    • 한국멀티미디어학회논문지
    • /
    • 제12권9호
    • /
    • pp.1210-1216
    • /
    • 2009
  • 본 논문에서는 순환최소순위(RLR) L-필터의 수렴성을 해석하였다. RLR L-필터는 순서통계필터로서 입력의 크기순서에 따른 가중치를 필터계수로 한다. 또한 RLR L-필터는 비선형 적응 필터로서 필터계수의 갱신을 위하여 RLR 알고리즘을 이용한다. RLR 알고리즘은 로버스트 통계학의 순위추정에 기초한 비선형 적응 알고리즘이다. 본 논문에서는 가변적인 스텝 크기를 적용하여 평균 및 평균제곱의 견지에서 수렴성을 해석하였다. RLRL-필터는 잡음의 분포함수가 두꺼운 꼬리 분포인 임펄스 잡음에 가까울수록 메디안 필터의 형태로 적응하며 가우시안 잡음의 경우 평균 필터의 형태로 적응한다.

  • PDF

컨셉 변동 스트리밍 데이터를 위한 적응적 가중치 조정을 이용한 동적 앙상블 방법 (A Dynamic Ensemble Method using Adaptive Weight Adjustment for Concept Drifting Streaming Data)

  • 김영덕;박정희
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.842-853
    • /
    • 2017
  • 스트리밍 데이터는 시간에 따라 지속적으로 생성되는 데이터 시퀀스이다. 시간이 지남에 따라 데이터의 분포 또는 컨셉이 변화할 수 있으며, 이러한 변화는 분류 모델의 성능을 저하시키는 요인이 된다. 점층적 적응적 학습 방법은 컨셉 변화의 정도에 따라 현재 분류 모델의 가중치를 조절하여 업데이트를 수행함으로써 컨셉 변화에 대한 분류 모델의 성능을 유지할 수 있게 한다. 그러나, 컨셉 변화의 정도에 맞는 적절한 가중치를 결정하기가 어렵다는 문제점이 있다. 본 논문에서는 컨셉 변화에 따른 적응적 가중치 조정에 기반한 동적 앙상블 방법을 제안한다. 실험 결과는 제안한 방법이 다른 비교 방법들에 비해 높은 성능을 보여줌을 입증한다.

다중제한조건을 갖는 부밴드 AP 알고리즘의 수렴해석 (Convergence Analysis of Multiple Constrained Subband Affine Projection Algorithm)

  • 김영민;손상욱;최훈;배현덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.474-476
    • /
    • 2009
  • 반향제거 또는 채널등화와 같은 무선통신 시스템에서 적응필터링은 매우 실용적이다. 적응필터의 계수갱신을 위해 사용되는 적응 알고리즘의 수렴성능은 입력신호의 상관도와 적응필터의 길이에 의존한다. 높은 입력상관도와 긴 길이의 적응필터는 수렴성능을 저하하므로 이러한 문제점을 해결하기 위해 최근 부밴드 구조에서 입력상관도를 사전제거하고 적응필터 계수를 갱신하는 부밴드 AP 알고리즘이 제안되었다. 본 논문에서는 다중제한조건을 갖는 부밴드 AP 알고리즘의 수렴성능 해석방법을 제시한다.

  • PDF

오류 차이를 활용한 가변 스텝 사이즈 LMS 알고리즘 (Variable Step Size LMS Algorithm Using the Error Difference)

  • 우홍체
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.245-250
    • /
    • 2009
  • 통신과 신호처리 분야에서 다양한 LMS 적응 알고리즘이 단순성과 강인성 때문에 사용되고 있다. 하지만 LMS 알고리즘의 느리고 균일하지 못한 수렴 특성은 잘 알려져 있다. 수렴 속도를 높이기 위하여 여러 가지 가변 스텝 사이즈 LMS 적응 알고리즘이 제안되고 연구되어왔다. 스텝 사이즈를 조절하기 위하여 오류 차이를 활용한 가변 스텝 사이즈 LMS 알고리즘을 제안한다. 제안된 LMS 알고리즘은 다른 알고리즘과 비교하였을 때 실험 결과로 볼 때 수렴속도가 빨랐다. 또한 제안된 알고리즘에 대한 이론적 성능을 평형상태에 대하여 분석하였다.

QAM 신호에서 Adaptive Modulus를 이용한 SMMA 적응 등화 알고리즘의 성능 개선 (Performance Improvement of SMMA Adaptive Equalization Algorithm using Adaptive Modulus in QAM Signal)

  • 임승각
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.115-120
    • /
    • 2016
  • 본 논문에서는 SMMA (Sliced Multi Modulus Algorithm) 등화 알고리즘에서 등화기의 출력 전력에 비례하는 adaptive modulus를 이용하므로서 등화 성능을 개선할 수 있는 AM-SMMA 알고리즘에 대하여 다룬다. 기존 SMMA 알고리즘에서는 등화기의 탭 계수 갱신을 위한 오차 신호를 발생할 때 송신측 QAM 신호의 통계 특성치인 modulus를 고정적으로 사용하지만, 제안 AM-SMMA에서는 등화기 출력 신호의 전력에 비례토록 modulus를 적응적으로 사용하게 된다. 제안 알고리즘의 개선된 등화 성능을 컴퓨터 시뮬레이션을 통해 확인하며, 성능 지수로는 등화기 출력 신호 성상도, 수렴 특성을 나타내는 잔류 isi, 최대 찌그러짐과 채널의 신호대 잡음비에 따른 SER을 사용하였다. 시뮬레이션 결과 slice 가중치가 적으면 잔류isi, 최대 찌그러짐 성능이 우월하며, 가중치가 큰 경우 SER 성능이 우월함을 확인하였다.

코호넨의 자기조직화 구조를 이용한 클러스터링 망에 관한 연구 (On the Clustering Networks using the Kohonen's Elf-Organization Architecture)

  • 이지영
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.119-124
    • /
    • 2005
  • Learning procedure in the neural network is updating of weights between neurons. Unadequate initial learning coefficient causes excessive iterations of learning process or incorrect learning results and degrades learning efficiency. In this paper, adaptive learning algorithm is proposed to increase the efficient in the learning algorithms of Kohonens Self-Organization Neural networks. The algorithm updates the weights adaptively when learning procedure runs. To prove the efficiency the algorithm is experimented to clustering of the random weight. The result shows improved learning rate about 42~55% ; less iteration counts with correct answer.

  • PDF

구조적으로 적응하는 퍼지 RBF 신경회로망 (Structurally Adaptive Fuzzy Radial Basis Function Networks)

  • 최종수;이기범;권오신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2203-2205
    • /
    • 1998
  • This paper describes fuzzy radial basis function networks(FRBFN) extracting fuzzy rules through the learning from training data set. The proposed FRBFN is derived from the functional equivalence between RBF networks and fuzzy inference systems. The FRBFN learn by assigning new fuzzy rules and updating the parameters of existing fuzzy rules. The parameters of the FRBFN are adjusted using the standard LMS algorithm. The performance of the FRBFN is illustrated with function approximation and system identification.

  • PDF

Adaptive Spatio-temporal Decorrelation : Application to Multichannel Blind Deconvolution

  • Hong, Heon-Seok;Choi, Seung-Jin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.753-756
    • /
    • 2000
  • In this paper we present and compare two different spatio-temporal decorrelation learning algorithms for updating the weights of a linear feedforward network with FIR synapses (MIMO FIR filter). Both standard gradient and the natural gradient are employed to derive the spatio-temporal decorrelation algorithms. These two algorithms are applied to multichannel blind deconvolution task and their performance is compared. The rigorous derivation of algorithms and computer simulation results are presented.

  • PDF