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Abstract: In this paper we present and compare two
different  spatio-temporal  decorrelation  learning
algorithms for updating the weights of a linear
feedforward network with FIR synapses (MIMO FIR
filter). Both standard gradient and the natural gradient
are employed to derive the spatio-temporal decorrelation
algorithms. These two algorithms are applied to
multichannel blind deconvolution task and their
performance is compared. The rigorous derivation of

algorithms and computer simulation results are presented.

1.Introduction

The Multichannel blind deconvolution (MBD) is a
fumdamental problem encountered in a variety of
applications such as wireless communications, image
processing, array processing, and some biomedical
applications. Let us define an m dimensional vector of
observations, x(k) and an »n dimensional vector of
sources, s(k) as

x(k) = [x (k) -+, x, (1T
s(k) = [s,(k), -+ 5, ()T

With this definition, the observation vector x(k) is
assumed to be generated from an unknown source vector
s(k) through the unknown MIMO FIR filter H(z) i.e,

x(k) = H(z)s(k) + v(k) @

where v(k) is an m dimensional additive whte Gaussian
noise vector that is assumed to be statistically
independent of the source vector s(k) . The FIR
polynomial matrix H(z) is described as

0]

M
Hz)= > Hz’ 3)

p=9

where z” is the delay operator such that
z7’s(k)y=s(k—p)and M is the order of the given
MIMO FIR channel. We assumed that source signals
{s;(k)} are spatially independent and temporally i.i.d.
The task of multichannel blind deconvolution is to
recover the source vector s(k) from the observation
vector x(k), up to possibly scaled, reordered, and
delayed estimates,
ie., s(k)=PAD(2)s(k) ,
permutation matrix, A€ R

where PecR™" is a
X . . .
™" is a nonsingular diagonal

matrix, and D(z) is a diagonal matrix given by
D(z) =diag{z™",--,z”"}. 4

In other words, the objective of multichannel equalizer so
that the global system G(z)(which combines the effect of
channel and equalizer) has a decomposition of the
following form:

G(z) = PAD(2). ©)

For an finite order MIMO FIR channel, not every
channel matrix H(z) has a decomposition (5). A
channel matrix H(z) is said to be signal-separable [16] if
there exist an equalizer (an inverse of the channel) so that
G(z) has a decomposition (5). Sufficient conditions for
signal-separability have been investigated by Massey and
Sain [17] and Tugnait [20]. It usually requires strictly
more sensors than sources, i.e., m ) n. Throughout this

paper, we will consider the case where the channel
H(z) satisfies the signal-separability conditions (see [20]
for detailed signal separability conditions). In addition,
we neglect the effect of additive noise vector v(k).

2. Why Spatio-temporal Decorrelation For
MBD

It was shown [12, 13] that if the channel H(z) 1is signal-
separable, then in the absence of additive noise v(k),
spatio-temporal decorrelation can deconvolve the MIMO
channel up to the instantaneous mixtures of source
signals which can be further separated by independent
component analysis [15, 11, 10, 5, 3, 6]. Let us define by
W(z) an multivariate FIR filter for spatio-temporal
decorrelation and by U a demixing matrix. Then
UW(z)H(z)has a decomposition (5). Linear prediction
method was employed in [12, 13] where some prior
knowledge is required to find an innovation vector. Latter,
the spatio-temporal anti-Hebbian rule {7, 9]. For a linear
feedback network was developed for spatio-temporal
decorrelation.
We would like to mention the advantages of this
approach over other existing MBD methods.
® Spatio-temporal decorrelation is able to
deconvolve the channel up to instantaneous
mixtures of sources, so the number of sources, so
the number of sources can be easily detected via
principal component analysis (PCA), whereas the
number of sources is assumed to be known in
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[14,18,4,19].

e This approach with the proposed algorithms is
computationally efficient over the successive
estimation [20], the sequential extraction [8].

e Spatio-temporal decorrelation is based on linear
learning, so the convolutive mixtures of arbitrary-
distributed sources can be separated. We found
out this approach is efficient for the mixtures of
super-Gaussian (sparse) soureces, whereas most
existing algorithms are focused on sub-Gaussian
sources.

In this paper, we cinsider an linear feedforward
network with FIR synapses (see Figure 1) and derive two
efficient spatio-temporal decorrelation algorithms using
both standard gradient and the natural gradient [1].

3. Spatio-temporal Decorrelation Algorithms

We derive two algorithms which are able to minimize
statistical dependence, although we are interested in
decorrelation. We treat spatio-temporal decorrelation
algorithms. As will be shown here, spatio-temporal
decorrelation algorithms can be obtained using Gaussian
density model

3.1. Standard Gradient

We consider a linear feedforward network with finite
order FIR synapes (multivariate FIR filter, see Figure 1)
whose m dimensional output vector, y(k)is described as

y(k) = YW, (0x(k - p), ©

where {Wp (k) } are synaptics weight matrices. We
define W(z,k) as

W(z,k) = iwp (k)z™ . Q)

We consider m observations { x;(k) } and m output
signals {y,(k) } over a N-point time block. Let us define
the following vectors:

X=[x"(0)x"(N-D'],

Y=[y (0)-y (N-D'T".

The coefficient matrices { W (k)} should be
updated in such a way that the filter output signals are as
spatio-temporally independent as possible, i.e., the joint
probability density of Y is factored into the product of

marginal densities:
m N

PeY)=]] ﬁq,(y,- (k))

i=1 k=

~[Ttaoy ®

In the second equality is the result of the assumption on
identical distribution.

As an optimization function, we choose the
Kullback-Leibler divergence which is an asymmetric
measure of distance between two different probability
distributions. Then, the risk R( W(z,k) )-the
optimization function-is given by

R(W(z, k)) = E{L(W(z,k))}

=% J‘p(Y)logdeY. )
[ Tta.0.000

To derive the relation between P(X)and P(Y), we
write (6) in a matrix form,

Y = WX, (10)
where W is given by
W, 0 0
e (1)
WN—I WN—Z Wo

The length of delay, L in the FIR filter is much smaller
than Nje., W, =---=W_ =0. The input-output
equation (10) written in a matrix form, leads to the

following relation between P(X) and P(Y):

p(X)

(V)= |det W0”|

; (12)

where det denotes the determinant of a matrix. Invoking
the relation (12), our loss function L( W(z,k)) is given
by

LOW(z,K)) = ~logldet W, - logq,(3).  (13)

Note that P(X) was not included in (13) because it does
not depend on the parameter matrix { W (k)}.

Using the stochastic gradient descent, we can derive
the following algorithm:

dL(W(z, k))
dw (14)

P

=1, AW, (k)8 , - o(y(k))x' (k - p)},

AW,,(k) =,

where 7, >0 is a learning rate and 3 , is the Kronecker
delta equal to 1 if p=0, otherwise it is zero. The
o(y(k)) is a elementwise function defined as

p(y(k)) =[2,(y, (k). 0, (¥, ()], (15)

where

Ologq,(¥,)
Y,

In order to avoid the computation of the inverse of the
matrix Wy(k) , we postmultiply (14) by
W/ (k)W (k). In addition, we add a constraint so that
the magnitude of {y (k)} is not controlled by the
algorithm. Specially this constraint is efficient for
overdetermined case. The resulting learning algorithm
for updating W, (k) has the form:

AW, (k) = 7, T (k) - y(K)x" ()W ()} W, (k)}, (17)

where I'(k) is a diagonal matrix whose ith diagonal
element is equal to the ith diagonal element of the matrix
y(k)x" (k)W) (k) . And for p=#0 , the learning

2, (y;(k)) = - (16)
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algorithm is
AW, (k) = ,y(k)x" (k= p) . (18)

As a special case of the algorithm (17),(18),linear
learning (¢(y;) =y,) can obatained using the Gaussian
density model, i.e.,

q.(y;)= !
i i \/E

3.2 Natural Gradient
The derivation of the spatio-temporal decorrelation
algorithm using the natural gradient was motivated by
Amari et al’s previous work [4] in which the only
complete case (m = n) was considered. In the derivation,
we use the technique described in [4] and also
incorporate a nonholonomic constraint [2] into the
algorithm.

To determine an learning algorithm which
minimizes the loss function (13), we calculate an
infinitesimal increment,

AL(W(z,k)) = L(W(z, k) + dW(z,k)) - L(W(z,k)), (20)

12
597

e

corresponding to an increment dW(z,k) . Simple

slgebric and defferential calculus yields
dL(W(z,k)) = 9" (y(k))dV (z,k)y(k) — o-{dV, (k)}, (21)

where dV(z,k) is defined as
dV(z,k) =dW(z, )W (z,k) (22)

and tr{} denotes the trace operation. This gives the
following learning algorithm in terms of dV(z,k) to
minimize (13),
dL(W(z,k
AV (k) = -, LWV (20)

av (k) (23)

= 7,415, - p(y(K)y" (k - p)}.
The stationary points of (23) satisfy
Efp,(y,(K)y,(k)} =1. (24)

In order words, the learning algorithm (23) forces
{y,(k)} to have constant magnitude. This might be a
problem for m > n if we do not know the number of
source signals. To avoid this drawback, we follow the
proposal on a nonholonomic constraint that was applied
to blind source separation [2]. We propose to replace the
identity matrix by a mxm diagonal matrix A (k)
whose  ith  diagonal element is given by
oy, (k) y," (k = p) . Then, the modified algorithm is

AV, (k)= 7,8, (K)5, - p(y(K)y" (k—p)}.  (25)

Therefore, the learning algorithm in terms of dW(z,k)
to minimize (13) has the form

AW (k) = 2 AV, ()W, (k)
= 7, A, ()W, (k) - p(y(k - L))
> WL (kyk-p-r)}. (26)

Note that as in {4], the second term in the right-hand side
of (26) is computed using the values delayed by L to
avoid the noncausality.

4. Computer Simulations

We now compare the performance of the two spatio-
temporal decorrelation algorithms (17)-(18) and (26).
Two sources signals consist of random variables that are
4QAM signals. Three convolutive mixtures were
generated through the following multivariate FIR
channel:

x(k) = H s(k) + H s(k —5)+ H s(k-10), (27)

where,
-0.98+0.65i 0.99-0.95i 0.44+0.56i 0.56+0.46i
H, =| 0.82+0.88i 0.98+0.87i|> H, =} 0.40-0.51i -0.54+0.24i
0.79-0.80i -0.64+0.88i 0.53+0.50i -0.52+0.24i
0.17:0.01i -0.18.0.01i
H,, =| -0.29-0.01i -0.19-0.01i
-0.10+0.02i -0.23-0.01i
For both algorithms, the linear learning, i.e., ,(y,) =y,
was used. The length of delay, L=20. The constant
learning rate 77, =0.0005 was used for both algorithms.
The output y(k) was fed into a linear feedforward

network described by
z(k) = U(k)y (k) (28)

for further separation. In this simulation, we used a ICA
algorithm (29)to update U(k) .

Uk +1) = Uk) + 7, {1 - [T (2(k)z(k)}UK)  (29)
f(z(k))

function, i.e.,

f(z,(0) = |z, (k) 2, (k). (30)
See Figure 2 and Figure 3, we can easily compare
performance of both algorithms. It can be observed that
the performance of the natural gradient learning in this
task is slightly better than that of standard gradient.

where is a elementwise cubic nonlinear

x,(k) » (k)
> W, (2) — (= > >
®
L W, (2)
»'W_(2) »(z) —
x, (k) ¥,.(k)

Figure 1. Linear feedforward network with FIR synapses
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Figure 2. Standard gradient method
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Figure 3. Natural gradient method

5. Conclusions

We have presented two spatio-temporal decorrelation
learning algorithms for updating the linear feedforward
network with FIR synapses. The algorithms have been
derived from an information theoretic viewpoint using
both standard gradient and the natural gradient. We
incorporate so that the resulting algorithm tolerates the
overdetermined case. The demonstration of the
algorithms was shown by applying them to multichannel
blind deconvolution task.
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