• Title/Summary/Keyword: adaptive simulation

Search Result 3,132, Processing Time 0.028 seconds

Analysis of the traffic flow using stochastic Petri Nets (스토케스틱 페트리 네트를 이용한 교통 흐름 분석)

  • Cho, Hwon;Ko, In-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1504-1507
    • /
    • 1997
  • In this paper, we investigate a traffic flow modeled by stochastic Petri nets. The model consists of two parts : the traffic flow model and signal controller model. These models are used for analyzing the flow of the traffic intersection. The results of the evaluation are derived from a Petri Net-based simulation package, Greatspn. Through simulation we compare the performances of the pretimed signal controller with those of the trafic-adaptive signal controller.

  • PDF

Sectorization Algorithms of Adaptive Sector Antennas for CDMA Mobile Communication Systems (CDMA 이동통신 시스템을 위한 적응형 섹터 안테나의 섹터형성 알고리즘)

  • 이주형;오창헌;조성준
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.41-44
    • /
    • 2001
  • In this paper, we have investigated the adaptive sector antenna which can control the size and direction angle of sectors, and proposed the three sectorization algorithms which are based on distribution of users, distribution of codes and distribution of signal power, respectively. The BERs of each sectorization algorithms are compared through computer simulation. As results of the simulation, the sectorization algorithm based on signal power are better than the other in terms nf BER. We have simulated error performance the DS-CDMA/BPSK system with the antenna in AWGN, frequency non-selective Rayleigh fading and MAI channels.

  • PDF

On the robust adaptive linearizing control for unknown and analytic relay nonlinearity

  • Lee, Jae-Kwan;Abe, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.177-180
    • /
    • 1996
  • The purpose of this paper is to design a robust adaptive control algorithm for a class of systems having continuous relay nonlinearity. This continuous relay nonlinearity can be defined as an analytic nonlinear function having unknown parameters and bounded unmodeling part. By this mathematical modeling, the whole system can be considered as a nonlinear system having unknown parameters and bounded perturbation. The control algorithm of this paper, RALC, can be constructed by robust adaptive law, feedback linearization, and indirect robust adaptive control. By this RALC, we can obtain that the output of given system can follow that of a stable reference linear model made by designer and the boundedness of all signals in closed-loop system can be maintained. Therefore, we can confirm a robust adaptive control for a class of systems having continuous relay nonlinearity.

  • PDF

On the generalized truncated least squares adaptive algorithm and two-stage design method with application to adaptive control

  • Yamamoto, Yoshihiro;Nikiforuk, Peter-N.;Gupta, Madam-M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.7-12
    • /
    • 1993
  • This paper presents a generalized truncated least, squares adaptive algorithm and a two-stage design method. The proposed algorithm is directly derived from the normal equation of the generalized truncated least squares method (GTLSM). The special case of the GTLSM, the truncated least squares (TLS) adaptive algorithm, has a distinct features which includes the case of minimum steps estimator. This algorithm seemed to be best in the deterministic case. For real applications in the presence of disturbances, the GTLS adaptive algorithm is more effective. The two-stage design method proposed here combines the adaptive control system design with a conventional control design method and each can be treated independently. Using this method, the validity of the presented algorithms are examined by the simulation studies of an indirect adaptive control.

  • PDF

Speed Control of Permanent Magnet Synchronous Motors using an Adaptive Controller (적응제어기를 이용한 영구자석 동기전동기의 속도 제어)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.977-983
    • /
    • 2011
  • This paper proposes a new adaptive speed controller to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed adaptive regulator does not require any information on the motor parameter and load torque values, so it is very insensitive to model parameter and load torque variations. Also, the stability of the proposed adaptive control system is proven. To validate the robustness of the proposed adaptive speed controller, both simulation and experimental results are provided under motor parameter and load torque variations. It is clearly demonstrated that the proposed adaptive regulator can accurately control the speed of permanent magnet synchronous motors.

Adaptive Neural Network Control of a Flexible Joint Manipulator (유연관절로봇의 적응신경망제어)

  • 구치욱;이시복;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.101-106
    • /
    • 1997
  • This paper proposes a stable adaptive neural network control(NNC) for fixable joint manipulators. For designing the stable adaptive NNC, the flexible system dynamics is separated into fast and slow subdynamics according to singular perturbation concept. For the slow subdynamics, an adaptive NNC is designed to warrant the system stability and NN learning by lyapunov stability criterion. And to stabilize the fast dynamics, derivative control loop is installed. Through numerical simulation, the performance of the proposed NNC was compared to that of an adaptive controller designed based on the knowledge of the system dynamics. The proposed NNC shows much improvement over the conventional adaptive controller.

  • PDF

The Adaptive-Neuro Control of Robot Manipulator Based-on TMS320C50 Chip (TMS320C50칩을 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.305-311
    • /
    • 2003
  • We propose a new technique of adaptive-neuro controller design to implement real-time control of robot manipulator, Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of loaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real time control of robot system using DSPs(TMS320C50)

  • PDF

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation Study)

  • Nguyen Phung-Hung;Jung Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • In Part I(theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot and automatic selection algorithm for learning rate and number of iterations, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

Optimal Design of the Adaptive Searching Estimation in Spatial Sampling

  • Pyong Namkung;Byun, Jong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.73-85
    • /
    • 2001
  • The spatial population existing in a plane ares, such as an animal or aerial population, have certain relationships among regions which are located within a fixed distance from one selected region. We consider with the adaptive searching estimation in spatial sampling for a spatial population. The adaptive searching estimation depends on values of sample points during the survey and on the nature of the surfaces under investigation. In this paper we study the estimation by the adaptive searching in a spatial sampling for the purpose of estimating the area possessing a particular characteristic in a spatial population. From the viewpoint of adaptive searching, we empirically compare systematic sampling with stratified sampling in spatial sampling through the simulation data.

  • PDF