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Abstract : In Part I(theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed.
The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show
the effectiveness and feasibility of the ANNAI autopilot and automatic selection algorithm for learning rate and number of iterations,
computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external
disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm

are also showed for comparison.

Key words @ Adaptive neural networks, Adaptive interaction, Autopilot, Course-keeping and Turning control, Track-keeping control.

1. Introduction

In this part of the paper, computer simulations for
course-keeping and track-keeping control performance of
the proposed NNC(Neural Network Controller) presented in
Part I (Nguyen and Jung, 2005) are undertaken. In these
simulations, the effects of random measurement noise and
wind disturbances are considered to test the reliability and
the robustness of the NNC.

To compare with the proposed ANNAI(Adaptive Neural
Network by Adaptive Interaction) autopilot, simulations of
backpropagation neural network (hereinafter called BPNN)
autopilot of previous studies are also shown with the same
number of training iterations and the effects of measurement
noise and wind disturbances. Additionally, the algorithm for
automatic adapting NN parameters (see Part I) is applied to
the ANNAI autopilot.

The NNC is designed _under the assumption that an
(heading,
is available on board. With the
availability of the general and additional navigational aids

accurate measurement of the ship’s state
position, yaw rate)

such as gyrocompass or satellite compass, rate gyro, and
GPS/DGPS receiver, accurate measurement of the ship’s
state is possible. In this paper, the mathematical ship
model is used for simulation and testing the performance
of the controllers. The ship model used in this study is a
realistic model of a Mariner Class Vessel. The planar
motion mechanism tests and full-scale steering and
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maneuvering predictions for this Mariner Class Vessel
were performed by the hydro—aerodynamics laboratory in
Lyngby, Denmark. To be able to do turning control and
cope with large steps of set courses, a reference model that
reflects the dynamics of the vessel is used to produce a
feasible desired course (Fossen, 2002). The simulations are
carried out using the MATLAB 7.0.

2. Simulations

2.1 Course-keeping and turning control simulations

In the previous study (Nguyen, 2005) we showed that
the proposed ANNAI autopilot needs much less iterations
This
significantly reduces calculation time of the NNC, which

for training than BPNN-based autopilot does.

is important in digital controller design. Many simulations
have been carried out to verify the ANNAI autopilot to
select the proper n and < to achieve the best
performance. Also in the previous study, we selected the
initial weights with opposite signs in the hidden neurons
as suggested in Saikalis et al(2001), and activation
function of the output neuron was sigmoid and linear
gain. But in the following simulations we select the
initial weights as rather small random values and good
adaptation does occur.

Firstly in this section, an ANNAI autopilot is simulated
in the case when the activation function of the output
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neurons is tangent sigmoid with fixed values of n and .
And next, the adaptation strategy of n and v is used in the
proposed ANNAI autopilot to show its effectiveness and
improvement. In order to test the robustness of the ANNAI
autopilot, wind disturbance and measurement noise are
used. The effect of wind disturbance against the body of
the ship is based on the work of Isherwood (1972)
introduced in Fossen (2002), with wind speed 20 m/s,
relative wind direction as a sine signal with amplitude of
[-60, +60] degree and period of 300 sec. A random signal
with a uniform distribution on [-0.02, +0.02] degree is used
as the sensor noise in the heading sensor.

The constraints in the actuators are € [-35°, 35°] and

5= re [-25%s, 2.5s). Firstly, the desired course against
0° is 20° from Os to 300s, then -20° from 300s to 600s, and
finally 20° from 600s to 900s. Next, the desired course is
30° from Os to 300s, then -30° from 300s to 600s, and
finally 30° from 600s to 900s. These rather large steps in
course changing are for testing turning control
performance. In all simulations, the initial speed is 15 knots
(or 7.7175 m/s).

The design of the ANNAI autopilot was described in
subchapter 31 of Part I and the BPNN autopilot
configuration is based on Zhang et al(1997a, b). A set of

performance indices is also defined to provide a numerical

comparison
Ey = YWt — ) W

k
By =06~ 6, )" @

k

where, E¢ is the squared amplitude of the heading error,

Ej is the variation in rudder adjustment.

1) Fixed values of n and

@ Course change from -200 to +20°

In Fig. 1 and Fig. 2, p, A and o are positive penalty
the leamming rate and number of training
iterations are fixed (n = 50, v = 1 for ANNAI and v =
0.25 for BPNN). The ANNAI and BPNN autopilots have
shown good performance with and without noise and

constants,

disturbances.

These simulations show the feasibility and effectiveness
of the proposed ANNAI autopilot. However, as shown in
Nguyen (2005), if n or/and v is increased, the large
overshoot in heading and oscillations in rudder will occur
due to exceed of training. Thus, pre-tests are necessary

here.
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(b) BPNN autopilot: n=50, v=0.25, p=1.5, A=¢= 0.1
Fig. 1 Simulations of ANNAI and BPNN autopilot without

wind and noise, course change from -20° to +20°
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(a) ANNAI autopilot: n=50, v=1, p=1, A=0=02
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(b) BPNN autopilot: n=50, v=0.25, p=1.5, A== 0.1
Fig. 2 Simulations of ANNAI and BPNN autopilot with wind
and noise, course change from -20° to +20°

- 120 -



Phung-Hung Nguyen - Yun-Chul Jung

Actual heading, reference course and desired course

40
& 20} 3
= : [
E : 1
3 Act hdg | %
T -20F | ———Ref.Co | | -

Des. Co !
40 T T L N n L L )
o 100 200 300 400 500 600 700 800 Q00
Rudder angle (8)
40 T T

Rudder (deg)
o

40 L . n L L
0 400 500 600 700 800 900
Tirne (s)

160 260 SCIID
(a) ANNAI autopilot: n=50, v=1, p=1, A=0=0.2

Actual heading, reference course and desired course

40
= 20f.f
2 f
g 0
3 Act. hdg
T -20F | ———Ref Co

40 T T L h L
o 100 200 300 400 500

Rudder angle (8}

40

Rudder (deg)

05 0 0 30 40 50 00 7m0 @0 %00
Time {s)
(b) BPNN autopilot: n=50, ¥=0.25, p=1.5, A=0= 0.1
Fig. 3 Simulations of ANNAI and BPNN autopilot without

wind and noise, course change from -30° to +30°
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(a) ANNAI autopilot: n=50, v=1, p=1, A=0=0.2
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(b) BPNN autopilot: n=50, v=0.25, p=15, A=c= 0.1
Fig. 4 Simulations of ANNAI and BPNN autopilot with wind

and noise, course change from -30° to +30°

@ Course change from -3 to +3f

Simulations in Fig. 3 and Fig. 4 showed good
performance of both autopilots in case the course change is
from -30° to +30°, with and without noise and disturbances.
From Fig. 1~4, better course-keeping, smaller overshoot
and less rudder efforts of ANNAI autopilot in comparison
with BPNN autopilot are observed.

In Table 1, the numerical comparisons of the two
autopilots in Figs. 1~4 are shown. These numerical results
show that, Ew of ANNAI autopilot is smaller than that of

BPNN autopilot with almost same FEj.

Table 1 Comparison performance indices

Fig. 1 Fig. 2 Fig. 3 Fig. 4
@ | ® | @ | b | @, O | @/Db
Ew 18680| 19759| 18781| 19758| 73008| 74290| 73208| 74328
E; 349| 356| 354| 355 407| 407 404 402

@ ANNAI autopilot with improper initial parameters
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(b) Simulation with: n=5, v=1, p=1, A=0=0.2
Fig. 5 Simulations of ANNAI autopilot with improper values

of learning rate (5a); number of training iterations (5b)

s n L
o 100 200 300

In Fig. 5 the simulations have been carried out with the
improper value of learning rate v=0.1 (Fig. 52) and improper
number of training iterations n=5 (Fig. bb) for the ANNAI
autopilot. The adaptation is poor even no wind and noise
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applied and course change is from —20° to +20°. Actually,
many pre-tests have been done to select proper value of
learning rate and number of training iterations in order to
achieve the good performance described in Fig. 1~4.

2) With adaptation of n and ¥

To improve the proposed ANNAI autopilot performance
and remove the time-consuming manual selections of n and
7, an automatic adaptation algorithm for these parameters
is adopted. Computer simulations are shown in Fig. 6 and
Fig. 7. In these simulations, no pre-tests are necessary and
we try to use improper initial values of n and v (n = 5, y
= 0.01) but they do not degrade the adaptation and
performance of the NNC. Because both n and « are updated
at every control cycle. The small average values of n are
also observed. The poor performance shown in Fig. 5 has

been overcome.
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Fig. 6 Simulations of ANNAI autopilot with initial n=5,
initial v=0.01; p=1, A=0=0.2, no wind and noise, course
change from -30° to +30°

Fig. 6 is the simulation result of ANNAI in case of no
noise and wind applied and reference course changes from

-30° to +30° In Fig. 7, the effects of measurement noise

and wind disturbances are included.
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Fig. 7 Simulations of ANNAI autopilot with initial n=5,
initial v=0.01; =1, A=0=0.2, with wind and noise, course

change from -30° to +30°
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These simulations show good adaptation ability of the
autopilot when coping with large change of reference
course and the robustness are maintained through time. We
do not need to adjust the NNC’s learning rate and number
of training iterations manually as they can be automatically
selected.

2.2 Track-keeping control simulations

In this subchapter, computer simulation results of track-
keeping control system using ANNAI autopilot presented in
section 4(Part I) are shown. BPNN autopilot is also used
for the same task and simulations result are presented for
comparison purpose.

In Fig. 8 and Fig. 9, a simple path consists of straight
segments connecting the following way-points: (0, 0),
(2000, 1000), (2500, 3000), (5000, 5000), (5100, 7000). The
unit is (m), simulation time is 1200s.
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Fig. 8 Track by ANNAI autopilot with wind and noise
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Fig. 9 Track by BPNN autopilot with wind and noise

In case no noise and wind applied, both autopilots perform
well. Fig. 8 and Fig. 9 show the simulation results of ANNAI
and BPNN autopilots under the effects of measurement noise
and wind disturbances. The start point is (100, 0). The two
autopilots can control the ship heading to follow LOS
guidance heading and make the ship track the desired path.
However, the proposed ANNAI autopilot performed better in
comparison with the BPNN autopilot in terms of the
difference between actual ship’s track and desired path.
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Fig. 10 Track by ANNAI autopilot with wind and noise
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Fig. 11 Track by BPNN autopilot with wind and noise

In Fig. 10 and Fig. 11, the selected path consists of
straight segments connecting the following way-points: (0,
0), (2000, 0), (2000, 3000), (0, 3000), (0, 0). The start point is
0, -200).
waypoints is 90 degree. The ANNAI autopilot performed
well while the BPNN autopilot failed to track the desired
path. It is also observed that the proposed NNC has a good
adaptation ability and the selection of n and v has been

The ship’s course change at intermediate

automatically optimized so that, the ship heading can follow
LOS guidance heading well.

3. Conclusions

This paper presented an application of neural network
control to automatic course-keeping, turning and track—
keeping control for ship. A new approach of neural network
training using adaptive interaction theory was further
developed and applied to automatic ship control. Various
computer simulations were undertaken to validate the
proposed ANNAI autopilot. The obtained results lead to the
following conclusions which are the advantages of the
proposed NNC:

(1) It can work well with good performance coping with
non-linear and time-varying characteristics of the ship.

(2) It is not necessary to use the ship model parameters in
designing the controller, the error in ship model can be
avoided.

(3) Its parameters can be dynamically updated to ensure the
robustness through time and speed up adaptation
process while maintaining sufficient training.

(4) The on-line training ability can help to cope with new
situations, including different ships or environmental
conditions.

(5) The proposed NNC is also stable as all its parameters
are updated at every control cycle.
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(6) It is not very sensitive to measurement noise of input
signals.

(7) The automatic selection algorithm for learning rate and
number of iterations worked well to maintain the
stability of the control system.

The NNC can adapt directly without approximating the
ship dynamics by a NN. This not only eliminates the error
but also

complexity of design. Furthermore, the proposed NNC can

in approximation, significantly reduces the
adapt faster than BPNN and its configuration is simpler
(Nguyen, 2005). With the proposed algorithm for automatic
adaptation of learning rate and number of training iteration,
the adaptation of NNC can be improved and manual
time-consuming selection of the NNC parameters is
removed.

The proposed NNC can be applied to other types of ship
and more complicated control problems because of its
adaptation ability. To improve the performance, it might be
used in combination with other techniques and theory such
as fuzzy control. These will be further research topics of
the authors.
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