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ABSTRACT

This paper presents a generalized truncated least
squares adaptive algorithm and a two-stage design
method. The proposed algorithm is directly derived
from the normal equation of the generalized truncated
least squares method (GTLSH) . The special case of the
GTLSM, the truncated least squares (TLS) adaptive
algorithm, has a distinct features which includes the
case of minimum steps estimator. This algorithm scemed
to be best in the deterministic case. For real appli-
cations in the presence of disturbances, the GILS
adaptive algorithm is more effective. The two-stage
design method proposed here combines the adaptive
control system design with a conventional control
design method and each can be treated independently.
Using this method, the validity of the presented
algorithms are examined by the simulation studies of
an indirect adaptive control.

1. INTRODUCTION

The least squares method (LSM) for on-line parameter
estimation in linear regression models depends on the
use of historic data, which are a collection of all
previous obserbations. This method does not neces-
sarily work well, however, with parameter convergence
and many other methods have been developped to improve
its convergence properties.!

In this paper a generalized truncated leasl squares
method (GTLSM) is proposed. A special case of GTLSM is
a truncated least squares method (TLSM). The TLSM de-
pends on the truncated data which are a collection of
the last M observations. Here, M is any number greater
than N which is the number of unknown parameters in a
regression model. In the ideal circumstance, where
there is no uncertainty, the algorithm converges to
its true value in a finite steps M. So, if M equals to
N, the TLSM algorithm gives a minimum steps estimaiur.
But, in the presence of disturbances, the algorithm is

very sensitive Lo a variation of the unknown parameter,
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and so is to disturbances. To moderate the estimated
parameter responses, a performance of GTLSM consists
of a linear combination of the one of TLSM and a term
of variation of estimates. A weighting parameter
introduced presents an adaptive ability in the closed
loop system when the algorithm is used in adaptive
control, special cases of which are adaptive control
with TLSM algorithm and the fixed parameter control.

In the second part of this paper, a two-stage design
method is proposed. The method includes double feed-
back loops , inner loop of which is to design a input-
output characteristics by a model matching method and
is able to use as an adaptive loop and the outer loop
is designed to compensate unmodeled dynamics and dis-
turbance without affecting input-output characteristic
which is independent with an inner loop design.

The effectiveness of the algorithm and the two-stage
design method are examined by means of the simulation
studies of indirect adaptive control systems synthesis
method.

2. PROBLEM STATEMENT and LSM

Consider a linear regression model
k=1,2, ... (2-1)
where y is a scalar output at the k*" instant, vy

yr= vy 0

is a N-dimensional known vector function and # is a
N-dimensional unknown parameter vector. The problem of
concern is to derive an algorithm which cstimates 8
in a recurrent form. Often this is done by minimizing
the performance criterion

Ay — v, T8)?
1

x
Jr=43 (z-2)

where 1 is a weighting paramcter. This is the LSH
with an forgetting factor. Where A =1 it is the
standard LSM. The normal form of (2-2) is
Rk k
(T ax ‘ViVi])UzElk"Vlyx

PR 11

(2-3)

and the recurrent form of the LSHN is

A0.=0x—0n_1=grew, (Z2-4-1)



ex=yx— Vx® Ou-1» (2-4-2)
Puoivik

= = 2-4-3

8x=Puvx 1+Vkrpk—1\/k ¢ )

k=2 (T —grvi™)Px-y- (2-1-1)

3. GENERALIZED TRUNCATED
LEAST SQUARES METHOD (GTLSM)

3.1 Derivation of a GTLS Adaptive Algorithm

The GTLSM is a method of finding a Oxwhich minimizes
M-1
Jk(B) M, gk)=%(1“ﬁ)2 ()"k»-i_ Okrvk—l)z
1=0

+4 B(0x—0x )" T{(0x~0x-1), 0=B=1 (3-1)
where Ox_; is a priori estimate at instant k, ' is a
positive definite symmetric matrix and the performance
is measured over the last M observations. It is also
possible to introduce a forgetting factor A in (3-1)
as in (2-2), but it is omitted here for simplicity.
The case B=0 is called the Truncated Least Squares
Method (TLSM) because the data are truncated. The
second term on the right side of equation (3-1) is
introduced to make the parameter estimates smooth.
When B=1 the case is trivial such that 8x=0, 4
which reduces to an initial estimate. Therefore, the
parameter B can be thought as measure of adaptive
ability in a feedback control system.

The normal form of equation (3-1) is

M-1
(8T+(1-8)1 V-1 Vi-1") Ok
1=0

M--1
=BT 01 +(1-B)L ve-1¥Yx-1- (3-2)
Define =0
-1 M-1
Qx =BTr+(-B)L vi-i1Ve-s'. (3-3)
i=0

Ther, it follows from the definition that
M-1

.‘6k=ﬁQkF Or-1 + (1= B)QxE V-1 ¥Yiu1» (3-4)

120
-1 -1
Qk =Qu-1 =B vevi'— viuvi-u') (3-5)
where Qi is positive definite for 0<CB =1. Another
excellent feature is an initial setting of Qx. By
using (3-3) recursively, it follows that
-1 -1 M-t
Qk;:QO +(1—ﬁ)): Vit Vi-1? (3-6)

1=0
and, from (3-3) and (3-6),
~1 1 —1
Qe =8T, Qn=§[‘ . (3-7)
If B tends to zero, 1/ 8 in (3-7) should be replaced
with a sufficiently large constant number as is done
in the standard LSM. Equations (3-4) and (3-5) give an
GTLS adaptive algorithm. To obtain a computationally

more effective algorithm, consider the following.

[ Pact 1] If the matrices A, and A satisfy the
equation
Ay l=A'+bct+d f" (3-8)
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for vectors b,c,d and f with an appropriate size,
then it follows that
A0=A—gnAbcTA+g12Ad CTA

+ g AbfTA—gAd fTA 3-9)
where
1+ fTAd fTAb
gu=—"f'_"'— , B12= — (3-10)
g g
TAd 1+cTAb
gzl=“c"'_" , g22= = — , (3-11)
g g

g=(0+fTAd)(1+cTAb)
- (fTAb)Y(cTAd). (3-12)
(Proof) This fact is proved by the well known matrix

inversion lemma.

Equation (3-3) then becomes
Qe=Quo1— (=Bl gixwik"+(1— B) g2 w2 T (3-13)
where the following variables are defined not only for
notational convenience, but also for ease of computer
programming .
Wik = Q-1 Vi

= T
Sk = Vi Wik,

Woax = Qx-1 Viems (3-14-1)
S k= VoM Waky _
SOk:Vk~MTW1k:VkTW2k, (3'14'2)

dx=1-(0-=8)sx) I+ (1= ) s 1)

+(1~ B)?*son?, (3-14-3)
g1k=((!_(1—— B) S 2) Wik
+(1-B)soxwa)/dw, (3-14-4)
gax=((1+{(1=B)s i) wax
—{1-8)soxWix) dx, (3-14-5)
eMme=Yr-m— Oxr’ Viom, (3-14-6)
ex—= ¥Yx— 91(717\/;” (3-14-7)
A0x=0x— 0y, (3-14-8)

The following relationships are also proved by direct
substitutions.
QuVe= g 1xs

From (3-2),
-1 M-1
Q. =BT 0, +(1-B)E vi-1¥x-y
1=0

(3-15)

Qx Vi-u= & 2k-

=BT Oxr+t (1= ) {viyx

M-1
~ViuYx-mt L Vi1 ¥r-t)
1=0
=Bl O H(I—BMViyu— Vi-uYr-u)
~1
+Quoy 01— B 0k 2
SRAL(0p-1— Ox2) U= B Ve Y= VimYxon)
-1
+{Qx _(l_ﬂ)(vkvkr
_Vy.—MVnyT))okV]. (3'16)
As a result, the following algorithm is obtained.
[ Theoren 1: GTLS Adaptive Algorithm 1 ]
A40.=BQl 40,
U= giner— BoxCux)-
Equation (3-17) and (3-13) with (3-14) give an
adaptive algorithm for the performance (3-1).

(3-17)

Substituting (3-13) into the right hand side of



(3-17) gives an another version of the algorithm.

[ Theorem 2: GTLS Adaptive Algorithm 2 }
A0x=8Qyx T A40x 1 +(1-B)gixlex
‘—Bw‘lkr[‘AGk—l)—(]_ﬂ)gZK(eMk
- BWZkTrA Gk—t)- (3-18)
Equations (3-18) and (3-13) with (3-14) give an
adaptive algorithm for the performance (3-1).

The algorithm performs two roles simultancously. One
is to add a new datum point and the other is to
discard an old datum point. These two activities can
be carried separately as follous

[ Corollary 1] Let
w2k=0y 50k=0 (3“19)
in the [ Theorem I, 2 ) . I- follows then that

su=0, dx=1+{1-8)s,
Bu=wn/dx, g2 =0. (3-20)
-and
Qe=Qx 1~ (1= Bl g ewi', (3-21)

A0,=Qu_y ra 9u—v-1
+(1-B)gixlex— Bwix"[A40x_y). (3-22)

This results in the addition of a new datum point at
each step in time and, when B=0, it coincides with
eq.(2-4) where 2=1.

[ Corollary 2] Let

w1k =0, s ok =0
in the [ Theorem 1, 2] . It follows then that

(3-23)

s 1x=0, de=1=0U~-B)s 2,
g1x=0, gBa=Awa/dx (3-24)
and
Q= Qu-1 +H(1— B) g warT, (3-25)

A8x=BQu 1" A6k,
—(1- ﬁ)gzk(EMk— ﬁWszrA 9k—1). (3-26)

In this case, only an old datum point is discarded
and time step is not proceeded.

3.2 Stability of the algorithm

To prove the stabitity of the algorithm, it is as-

sumed that the unknown parameter vector 8 is constant.

From (3-4), (3-5) and (2-1), it follows that

o fo-00=8r(8-10,).
For this system, the following function

Le=(6-0.)"T(0~0 (3-28)
becomes a Lyapunov function. The proof is as follows.
From (3-27) and (3-28),

ALk;"Lk“Lk-l

3-27

=—(0‘0k—1)TFQkDri(G—Gku1) (3"29)
where
-1 -1 -1 R
D=Qx I' Q. —B2T. (3-30)
Define
M-t
(3-3D)

Av=E Vie vi- 20
1=0

and assume that A, is positive definite. Then {rom
(3-3), (3-30) and (3-31)
D=(1=6)(2 B Av+ (1= YA AL
and
AL, <0
follows for 0= B<1l. This means that the system
defined by (3-27) is asymptotically stable. It is also
clear that for =0, 8,= 0 when Ay becomes
positive definite for constant 0.

(3-32)

Nexl, consider the following function which is a
difference of the squares sums of a posteriori output

estimation error and a priori one.
M-1

Ae 2= (yr1T~veo1T0x)2
1:0
M-1

-E (}’k-l“ VkvlT 9k—1)2. (3'33)

1=0
Then this is reformed to
A 2=(0-0)"A(0—08))
(0= 0x-1)"A(8— 0xy)
=—(6-— 9k~1)TFQkCri( 60— ekAl) (3-34)
where

c=ar ' iAol - pea.
(1= B)A2 BT 4= BT AT DA, (3-35)

Here Ay is positive semidefinite and so is C and

Ae 220 (3-36)
holds for any M and 0= 8<1. Equality in (3-36) holds
when

BAQKT (08— 0k )=Au(0— 0x)=0. (3-37)
Therefore, if Ay is positive definite
Ae?<0. (3-38)

Furthermore, it is shown that the introduction of f
has a role to decrease the expectation of the varince
of the estimated parameters errors under the condition
that the system is corrupted with a white gaussian
output disturbance.

3.3 TLS Adaptive Algorithm

As is seen in the proof of stability, the case where
B =0 has a special feature in the GTLS algorithnm.
This case is called the TLS algorithm because this is
the same with a standard LS algorithm (2-4) except the
data are truncated. In this case, the nonsingularity
of Qu and the initial setting (3-7) are not valid.
For the initial value of Qg, two methods can be
considered.

[Setting 1] Given the initial estimate 0,, it may be
assumed that the system parameler vector had a value
0¢ for k=0 and then changed to the real value 8 for
k>0. These past fictitious valves v (1—-H< j =0)
can be conslructed in such a way that the systenm
cquation (2-1) is satisfied for the parameter 0, and
initial value yo, and Qo determined by (3-3) where



B =0 is nonsingular.
[Setting 2] As with the standard LSM,
Qo=7r1, 1-KS 3§ =0 (3-39)
where I is a unit matrix and v a sufficiently large

v=0.

number.

[Setting 1] corresponds not only to the initial time
step but also to any instant where the system para-
neter vector is changed. This setting is generally not
easy to construct and is of only theoretical interest.

In contrast to this case, [Setting 2] is more easy to
perform in practice although it shows only approxi-
mated version. Some properties of TLS algorithm, with-
out proof, are listed below.

[Proposition 1] Adaptive algorithm 1 or 2 where B =90
with a [Setting 1] and the assumption that Qi is
nonsingular satisfies the normal equation (3-2).

[Proposition 2] For Q) to be nonsingular, it is
necessary and sufficient that d«#0.

[Proposition 3] k=M is the minimum number of steps
for Oy to converge to its true value §.

[Proposition 4] If M=N and Q. ! is nonsingular, then
yk—lzvk—lreky i=0,1,...,N~1 (3'40)

holds.

[Proposition 5] If Q,, Jj¢k-1, are nonsingular and
Qx"! becomes singular, then

(3-4D)

Yir-u= Viu® B 1=0.

To treat the case where Qx is singular, two methods
can be considered.

1) Utilize [ Theorem 1 or 2 ) and [ Corollary 1 and
2 ] where B=0. When Qx becomes singular, which is
recognized by the value of di by the [Proposition 2],
[ Corollary 1] is used to keep Qi nonsihgular. In
this case, M is augumented. When Qjx is nonsingular,
then [ Corollary 2 ] is used to reduce the augumented
value X to the prescribed value, if possible. In this
case, the algorithm always satisfies the normal
equation (3-2) with B =0, but may not be practical
since the upper bound of M is not known in advance.

2) A more practical method is as follows. If Qi
becomes singular, then 6,= 0x_; is used instead of
(3-17) or (3-18) and the data at this time step k are
discarded. The nonsingularity of Qux can then be
maintained. This method is easy to implement, but
provides for only a theoretical approximation.

It is more efficient, however, to introduce a
threshold such that
If tex!<e, then 0x=0x-, (3-42)
since the algorithm is very sensitive not only to the
parameter variations, but also to any inaccuracies
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that may exist. It becomes clear from the simulation
studies that the introduction of (3-42) should be used
with ey instead of dx-

4, TWO-STAGE DESIGN METHOD
4.1 Design Method

Let the process to be controlled be described by

Py =R(u+w) (4-1)
where u is the control variable, y is the measured
output and w is an input disturbance. The symbols P
and R denote relatively prime polynomials in the
forward shift operator z with degrees
degR=m, 4-2)
respectively, and P is a monic polynomial. The

degP=n,

desired model be described by

Psaya=Raua, (4-3)
where uaq is the reference input and ya is the
desired output. P, is monic and P4 and Ry are
stable polynomials with degrees

degPa=nasa=2n-m-—1, degRs=mg¢=n -1, (4-4)
respectively. In this formulation, control u is
designed as follows.

KiRsu=Rasv+A;u+B,y (4-5)
where

P.=QP+5S,;, A;=K;Rs-QR,

Bi=— S, degA=ms=n-—-1, (4-6)
and v is an intermediate variables designed below.
This control constitute an inner feedback loop and it
is easily seen that the feedback system coincides with
the desired model (4-3) when v =uy4. If the plant
parameters are unknown, then (4-5,6) can be used as an
adaptive loop to adjust the parameters of the unknown
matrices A; and B, using the GTLS adaptive algorithnm
as an adaptive law. In this setting, the model
matching design is also performed by setting =1
vhen a tolerable initial estimate of 0 is givem and
the plant parameter variation are not expected.

The second feedback loop v can be designed as

QRsv=TRqua—SPay 4-7
for a stable monic polynomial T, and

T=Q+S, degT=p2n-—m,

degQ=p, degS=sSp—-n+m. (4-8)

The design of the outer loop (4-7) and (41-8) is
independent of the inner loop. This is considered as
one of the presentations of design method with two
derees of freedom. By a direct substitution, second
loop does not affect the input output characteristics
ang is devoted to compensate system uncertainties like
unmodeled dynamics and disturbances.

4.2 Design Method of Outer Loop

The sensitivity function Se and complementary
sensitivity Te of the outer loop to the inner loop



can be derived as follows.
Q S
=—, Te=—. 4-9
Se T e= (4-9)
In order to minimize Se and/or Te, define T, Q and
S as

£ a
T=L tz”' Q=L q.2°7', S=L sz},
1=0 1=0

to=qo=1,  (4-10)
and consider the performance indices
Jr=+1(t,)?  Ja=+E(q,)?,
Js=+4+1(s1)?, (4-11)

It is impossible to minimize the above separately, so
the following performance index is introduced.
J=al(Jr+Ja}+(1-aX{Jr+JTs)

=Jz+a~]a+(l"a)-]s (4‘12)
where a is a weighting factor of the sensitivity and
complementary sensitivity parameters. In order to have
a zero steady state error for a step input or dis-
‘turbance, polynomial @ has to include a factor z—1.
Two methods are available for this purpose. One is to
replace Jaq with

Jar= 420 ¥ a1207 Jar=45( B () ay-0)?
1-0

. 1=0 k=0 x=0 (1-13)
and, in general,
r
JB=+L( E wen 1 Croyd )2 (4-14)

1=0 k=0
1t is shown that (4-14) can be minimized using 7
integrators in Q. The other is to force the term z—1
in Q such that

Q=-1"Q (4-15)
As a result, the J has four parameters,
J=J(ese, n, 7) (4-16)

where 7 shows the number of integrators desired and
7Y 1is the total number of compulsory integrators
included. The roles of 7 and 7 are the same when «
=1. When the parameters of J are determined, the
coefficients of the polynomials T, Q and S are
derived by differentiating J

5. SIMULATION STUDIES

Consider as an example a second order system
described by

(z2+pyz+p2)y=(roz+r,lu (5-1)

and a reference model by

(z2+pa1z+par)ya=(raoz+radua, (5-2)

where

pi1=—1.112, p,=0.243, r,=0.133, r,=0.0835,

Pa1=—0.906, pa,=0.156, r40=0.292, rq;=0.108.
(5-3)

For the parameter variation, consider the case.
p1=1.2p,=—1.3344, k=80. (5-4)
The poles of the system are 0.813, 0.299 and, after
variation, they become —1.117and —0.218 which show
that the system becomes unstable. The control input is

also restricted to the interval —2=uS2. In some
cases which follow, a disturbace is added to the input
signal. The disturbance used in the simulations is a
pseudo-random binary sequence .zenerated by means of
shift register with feedback® and the magnitude of
PRBS is chosen as 0.1.

The inner loop is determined by (4-5) and (4-8) as

+
u='—-1 (v+ 2o u+ boz +b, y), (5-5)
1 raocz + ray

rdoz+r“
where

Ki=ro/ras, Ai=aoc=Kirai—ry,
Bi=bez+bi=(pi1~pa)z+(p2—paz). (5-6)
Let p =1, then the outer loop is

=zttt _'50(22+Pdlz+Pd"2__)Ay 5-7)
z + q;, ¢ (z+qg,)(rsez+ra,) ’
where
T=Z+t11 Q=Z+qu S:SO' (5_8)

Obviously, these loops (5-5) and (5-7) can be combined
into one and system equation (5-1) is transformed to
the form of (2-1) and

6T=(p1,P2srosl). (5'9)
To show the evaluation of the initial estimate of 6,
parameter 8 is introduced as

80,=68 6. (5-10)
If 8=1, then (5-5) acts as a model matching control,
and (5-7) has a conventional integral action if % =1
and @ =1 or v =1. The case where 7 =1 and @ =0 is
the same with the case where n =0 which mean the
control without integrators. When 7 =1, the steady
state error decreases, in general, to zero as a tends
to 1. The intermediate value of a, 0<a<l, is
effective if the integral action is so strong that the
closed loop system beccomes oscillatory or unstable.
These situations will be happened in the cases that
the § is far from 1, system is under noisy
circumstances and a system nmodel has indisregarded
unmodeled dynamics. In these cases, adaptive cgntrol
becomes more useful. Fig.l and Fig.2 demonstrate the
simulations for adaptive control using GTLSM without
and with disturbance, respectively, where § =0.2,
n=1, a=1, B=0.1 and H=10. Fig.l is almost the
same with the case using TLSM vhere the exact
coincidence with the real values can be attained
in the parameter estimation. In the presence of
disturbance, the output response of the adaptive
control using GTLSM is satisfactory and the
parameter responses are fairy tolerable compared
to the cases of TL.SM and LSM. The numerical values
listed just below the Figs.b indicate the real
system parameter values and their estimates at 80
and 160 steps. As figures show, the GTLS adaptive
algorithm is also effective for systems whose
parameter change drastically. It is clear by the
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formulation that, since the GILSM and the TLSM
treat truncated data, the algorithms are not
affected by any parameter variations before M
steps past.

5. CONCLUSIONS

In this paper, the generalized truncated least
squares adaptive algorithm is presented. The
proposed algorithm is directly derived from the
normal equation of the generalized truncated least
squares criterion. The special case of the GTLSH,
the TLS adaptive algorithm, seemed to be best in
the deterministic case. For real applications, the
GTLS adaptive algorithm is more effective. The
two-stage design method is also presented here.
Using this method, the validity of the presented
algorithms are examined by the simulation studies.
In this studies, the two-stage design method is
used only as an integrator, therefore more
thorough researches are expected.

The problem is how to determine the parameters
n, 1,
B and M (in the case of adaptive control). These

vand «, and how to choose the values

are highly depending upon a system itself, its
environments and the objects of control. But, in
authors experinces, it is recommended that p =7
=a=1, v=0, 8=0.01~0.1 in nost cases. The
value M in adaptive algorithm is also important.
This depends upon a computer ability and a
sanpling time. For a slow system parameter
variation, M can be a large number, but for a

rapid variation, small M gives a quick convergence.
This becomes also a trade off.
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[Fig.lal: Adaptive Control using GTLSM,
§ =0.2, n=1, a=1, p=0.1, =10,
Input and Output Responses.
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[Fig.2a]: Adaptive Control with disturbance
using GTLSM, 8 =0.2, n=1, a=1, B =0.1, ¥=10,
Input and output Responses.
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