• Title/Summary/Keyword: adaptive genetic algorithm

Search Result 227, Processing Time 0.024 seconds

An Improved Adaptive Scheduling Strategy Utilizing Simulated Annealing Genetic Algorithm for Data Center Networks

  • Wang, Wentao;Wang, Lingxia;Zheng, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5243-5263
    • /
    • 2017
  • Data center networks provide critical bandwidth for the continuous growth of cloud computing, multimedia storage, data analysis and other businesses. The problem of low link bandwidth utilization in data center network is gradually addressed in more hot fields. However, the current scheduling strategies applied in data center network do not adapt to the real-time dynamic change of the traffic in the network. Thus, they fail to distribute resources due to the lack of intelligent management. In this paper, we present an improved adaptive traffic scheduling strategy utilizing the simulated annealing genetic algorithm (SAGA). Inspired by the idea of software defined network, when a flow arrives, our strategy changes the bandwidth demand dynamically to filter out the flow. Then, SAGA distributes the path for the flow by considering the scheduling of the different pods as well as the same pod. It is implemented through software defined network technology. Simulation results show that the bisection bandwidth of our strategy is higher than state-of-the-art mechanisms.

A Study of Adapted Genetic Algorithm for Circuit Partitioning (회로 분할을 위한 어댑티드 유전자 알고리즘 연구)

  • Song, Ho-Jeong;Kim, Hyun-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.164-170
    • /
    • 2021
  • In VLSI design, partitioning is a task of clustering objects into groups so that a given objective circuit is optimized. It is used at the layout level to find strongly connected components that can be placed together in order to minimize the layout area and propagation delay. The most popular algorithms for partitioning include the Kernighan-Lin algorithm, Fiduccia-Mattheyses heuristic and simulated annealing. In this paper, we propose a adapted genetic algorithm searching solution space for the circuit partitioning problem, and then compare it with simulated annealing and genetic algorithm by analyzing the results of implementation. As a result, it was found that an adaptive genetic algorithm approaches the optimal solution more effectively than the simulated annealing and genetic algorithm.

The Design of a Classifier Combining GA-based Feature Weighting Algorithm and Modified KNN Rule (GA를 이용한 특징 가중치 알고리즘과 Modified KNN규칙을 결합한 Classifier 설계)

  • Lee, Hee-Sung;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.162-164
    • /
    • 2004
  • This paper proposes a new classification system combining the adaptive feature weighting algorithm using the genetic algorithm and the modified KNN rule. GA is employed to choose the middle value of weights and weights of features for high performance of the system. The modified KNN rule is proposed to estimate the class of test pattern using adaptive feature space. Experiments with the unconstrained handwritten digit database of Concordia University in Canada are conducted to show the performance of the proposed method.

  • PDF

GA-based Adaptive Load Balancing Method in Distributed Systems

  • Lee, Seong-Hoon;Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • In the sender-initiated load balancing algorithms, the sender continues to send an unnecessary request message fur load transfer until a receiver is found while the system load is heavy. Meanwhile, in the receiver-initiated load balancing algorithms, the receiver continues to send an unnecessary request message for load acquisition until a sender is found while the system load is light. These unnecessary request messages result in inefficient communications, low CPU utilization, and low system throughput in distributed systems. To solve these problems, in this paper, we propose a genetic algorithm based approach fur improved sender-initiated and receiver-initiated load balancing. The proposed algorithm is used for new adaptive load balancing approach. Compared with the conventional sender-initiated and receiver-initiated load balancing algorithms, the proposed algorithm decreases the response time and increases the acceptance rate.

An Efficient Global Optimization Method for Reducing the Wave Drag in Transonic Regime (천음속 영역의 조파항력 감소를 위한 효율적인 전역적 최적화 기법 연구)

  • Jung, Sung-Ki;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The use of evolutionary algorithm is limited in the field of aerodynamics, mainly because the population-based search algorithm requires excessive CPU time. In this paper a coupling method with adaptive range genetic algorithm for floating point and back-propagation neural network is proposed to efficiently obtain a converged solution. As a result, it is shown that a reduction of 14% and 33% respectively in wave drag and its consumed time can be achieved by the new method.

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스-메시 유전 알고리즘에 의한 퍼지 모델링)

  • 최종일;이연우;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

A Combined CPG and GA Based Adaptive Humanoid Walking for Rolling Terrains (굴곡진 지형에 대한 CPG 및 GA 결합 기반 적응적인 휴머노이드 보행 기법)

  • Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.663-668
    • /
    • 2018
  • A combined CPG (Central Pattern Generator) based foot trajectory and GA (Genetic Algorithm) based joint compensation method is presented for adaptive humanoid walking. In order to increase an adaptability of humanoid walking for rough terrains, the experiment for rolling terrains are introduced. The CPG based foot trajectory method has been successfully applied to basic slops and variable slops, but has a limitation for the rolling terrains. The experiments are conducted in an ODE based Webots simulation environment using humanoid robot Nao to verify a stability of walking for various rolling terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performance especially for the cascade rolling terrains.

Improvement on Sensorless Vector Control Performance of PMSM with Sliding Mode Observer

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon;Jung, Young-Mi
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.129-136
    • /
    • 2014
  • This paper proposes improvement on sensorless vector control performance of a permanent magnet synchronous motor (PMSM) with sliding mode observer. An adaptive observer gain and second order cascade low-pass filter (LPF) were used to improve the estimation accuracy of the rotor position and speed. The adaptive observer gain was applied to suppress the chattering intensity and obtained by using the Lyapunov's stability criterion. The second order cascade LPF was designed for the system to escalate the filtering performance of the back-emf estimation. Furthermore, genetic algorithm was used to optimize the system PI controller's performance. Simulation results showed the effectiveness of the suggested improvement strategy. Moreover, the strategy was useful for the sensorless vector control of PMSM to operate on the low-speed area.

Fuzzy Gain Scheduling Flux Observer for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기 구동장치를 위한 퍼지이득조정 자속관측기)

  • 금원일;류지수;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.234-234
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer takes an adaptive scheduling gains where motet speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimated values of stator resistance and speed are included as observer parameters. The parameters of the PI controllers adopted in the adaptive law for the estimation of stator resistance and motor speed are determined by simple genetic algorithm. Simulation results in low speed region are given for comparison between proposed and conventional flux estimate scheme.

  • PDF

A study on Adaptive Image Preprocessing Filter using Genetic Algorithm (유전알고리즘을 이용한 영상의 적응형 전처리 필터 구현에 관한 연구)

  • Koo, Ji-Hun;Lee, Seung-Young;Lee, Chong-Ho;Rhee, Phill-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2693-2695
    • /
    • 2001
  • In this paper, we present an adaptive image filter using genetic algorithm. The filter is robust to the characteristic variance of image and noise, by evolving the parameter and combination of image preprocessors properly. And we have adopted adaptive mutation strategy, which use different mutation rate for specific region of chromosome. The filter is implemented on FPGA board and controlled by host PC.

  • PDF