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Abstract 

 
Data center networks provide critical bandwidth for the continuous growth of cloud 
computing, multimedia storage, data analysis and other businesses. The problem of low link 
bandwidth utilization in data center network is gradually addressed in more hot fields. 
However, the current scheduling strategies applied in data center network do not adapt to the 
real-time dynamic change of the traffic in the network. Thus, they fail to distribute resources 
due to the lack of intelligent management. In this paper, we present an improved adaptive 
traffic scheduling strategy utilizing the simulated annealing genetic algorithm (SAGA). 
Inspired by the idea of software defined network, when a flow arrives, our strategy changes the 
bandwidth demand dynamically to filter out the flow. Then, SAGA distributes the path for the 
flow by considering the scheduling of the different pods as well as the same pod . It is 
implemented through software defined network technology. Simulation results show that the 
bisection bandwidth of our strategy is higher than state-of-the-art mechanisms.   
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1. Introduction 

In recent years, Internet online business (e.g., searching, transacting, contacting) has been 
growing rapidly. In order to meet the increasing transaction need, cloud computing has been 
widely concerned in industry and academy[1]. In the infrastructure of cloud computing, a data 
center network plays a significant role in the interconnect dedicated links and switches. 
However, as businesses continue to extend, how to allocate the proper bandwidth demand 
presents a special challenge. 
   The development of the business and the use of new technologies have brought new 
challenges to the data center network. Especially, flow scheduling  is very significant in data 
centers, which aim at providing enough bisection bandwidth for popular applications. 
   There have been  flow scheduling approaches in the last years. They are generally classified 
into centralized traffic scheduling and distributed traffic scheduling. Hedera[2], 
Ashman-BestFit, Ashman-ProFit[3], MicroTE[4], FreeWay[5] and a Coarse-grained 
Scheduling[6] are popular centralized traffic scheduling. They intend to rely on some 
controllers to monitor the path allocation as a passive way. On the other hand, VLB     (Valiant 
Load Balancing)[7], DRAD[8] and DiFS[9] are popular distributed traffic    scheduling. They 
do not need a controller to schedule some flows as an active way.  
    Though the existing flow scheduling approaches can promote more bisection bandwidth, 
they not only create path conflicts, but also are lack of intelligent management. Since the flow 
can not be scheduled according to the self-demand, they fail to take full advantage of the link 
resource to achieve high bisection bandwidth.  
   The rise of SDN provides a new idea of solving the problem of the data center network. SDN 
is an innovative network architecture and stems from Stanford University in the United States 
in 2006 clean slate research project. Especially, its core is the separation of the control plane 
and the traditional distributed network devices in order to realize the centralized control of 
them. The centralized control can obtained by some similar network operating systems. 
Naturally, the centralized control provides flexible developing and programming interfaces 
while the network device is only responsible for simple data forwarding[10-12]. When the 
controller starts, OpenFlow[13-15] switches try to open a secure channel to the controller. 
After some switches are connected to the controller, the controller can start to manage 
different modules. As a result, it enables us to perform query, insert and modification about 
some flow entries. OpenFlow protocol includes some special features that can be leveraged to 
realize our idea. It is worth noting that the controller has many functions using a variety of 
listener events to improve the performance of our experiments. Therefore, compared with 
some traditional scheduling ways, the genetic algorithm is a good choice by combining 
different algorithms. 
   The genetic algorithm is a kind of global search algorithms. It can use some operations to get 
different species. And an adaptive scheduling algorithm [16] is used to cope with the problem 
of multimedia traffic. We can deal with the problem of the flow scheduling by a dynamic 
scheduling mechanism with SAGA. In this paper, we improve the scheduling mechanism by 
updating the bandwidth demand and recovering the path bandwidth. And we propose SAGA 
(simulated annealing genetic algorithm) taking full advantage of the link sources. It considers 
the communication in the different pods as well as the same pod.  
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our contribution includes: 
1. We improve a choosing flow strategy to filters out flows in need for scheduling based 

on the dynamic demand in real time t to lower the load of the controller.  
2. SAGA considers the scheduling of the different pod as well as the same pod based on 

the changing demand to facilitate the bandwidth resources of the network link and improves 
the network bandwidth utilization. 
  This paper is organized as follows. We overview the related work in Section 2. Section 3 
introduces the background about the scheduling strategy. We address the SAGA and adaptive 
scheduling strategy in Section 4. Section 5 describes the implementation and evaluation. 
Finally, we conclude this paper in Section 6. 

2. Related work 

There have been recent efforts for addressing various flow scheduling methods to improve 
the bisection bandwidth. In all, all research is classified into two categories: centralized traffic 
scheduling and distributed traffic scheduling. 

2.1 Centralized Traffic Scheduling  
  The traditional way adopts ECMP (Equal Cost Multipath). It statically strips flows across 
available paths and then produces some path conflicts. Those conflicts will result in serious 
congestion. In order to deal with the above problem, hedera[2] is presented by designing GFF 
(Global First Fit) algorithm and SA (simulated annealing) algorithm.  
   GFF is a kind of greedy strategy, which can find the first path to satisfy the demand of flow 
bandwidth by searching each flow. Though GFF takes the remaining path bandwidth into 
account, it fails to consider the already changing demand due to the effect of the added flow on 
the previous flow. SA is a global heuristic algorithm. On one hand, the key insight of SA is to 
assign a single core switch for each destination host. This only considers the communication in 
different pods. However, the communication in the same pod also exists. On the other hand, 
the link is regarded as an idle state in each SA scheduling period, and then the global 
scheduling of all flows is performed, which makes frequent replacement of the path. 
Unfortunately, the scheduled path may be in the non-idle state which will cause the flow 
conflict. And the frequent path replacement will also increase the controller load. 
   Hedera remains more fragments in allocating bandwidths. In order to take advantage of 
fragments, Ashman-BestFit and Ashman-ProFit are raised gradually. Ashman-BestFit 
allocates the path to the flow with the closest to the bandwidth demand. But it is possible to 
cause many flows to be scheduled on the same link, which leads to the frequent usage of the 
partial links while the other idle. Ashman-ProFit sets up the allocation probability for each 
candidate path. If the path bandwidth is closer to the bandwidth demand, the more likely the 
path will be allocated to the flow. 

A fine-grained flow engineering scheme based on MicroTE is proposed with monitoring 
module, a network controller and a routing module to reduce the workload of network 
equipment. 

2.2 Distributed Traffic Scheduling  
   VLB (Valiant Load Balancing) [7] is adopted to balance the load. Each server randomly 
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selects each flow to a relay switch, and then selects a path to the destination host. It is a static 
way of flow scheduling. To deal with the scalability of centralized traffic scheduling, DRAD 
[8] allocates many multiple level IP for terminal hosts to forward data packets. Each switch on 
all paths is necessary to be monitored to get the state of links. But DRAD has the upgrading of 
the protocol and the complexity of monitoring. So DiFS[9] is proposed, which does not ask for 
centralized control and not allow to split a flow. Therefore, it will avoid the disorder of the 
packet. But there are the local and remote flow conflict in DiFS. The local flow is in the same 
pod while the remote flow in the different pod. DiFS needs to avoid these two types of 
conflicts in respect and weighs the traffic load. On the whole, the way of avoiding the local 
conflict is simple. Each switch uses PAA (Path Allocation Algorithm) to send evenly traffic to 
all the ports in order to avoid the local conflict. However, the way of avoiding the remote 
conflict is relatively complex. At first, IDA (Imbalance Detection Algorithm) is used to detect 
some links that are connected with the switch. After a collision is detected, the switch will 
send an EAR (Explicit Adaption Request) message to change the switch path. When the EAR 
message is received, EAA (Explicit Adaption Algorithm) is carried out to avoid remote flow 
conflict. Those above distributes traffic scheduling methods add more loads to the controller. 
   Even though the existing scheduling methods can deal with the shortage of multipath, they 
are lack of intelligent management and adaptive scheduling.  

3. Background 

In this section, we introduce the topology, ECMP, traffic monitoring, bandwidth demand 
estimation and bandwidth resource recovery. The topology is simulated with popular fat-tree 
in data centers, from which the controller can collect detailed information. ECMP is called to 
bring the basic state of the flow as the start of the system. The main purpose of the traffic 
monitoring is to filter out the elephant flow for scheduling. Bandwidth demand estimation is 
aimed at estimating the demand as a threshold. Bandwidth resource recovery saves resources 
to make full use of the bandwidth. Each is described in detail below. 

3.1 Topology   
The traditional topology is improved in switches and servers. Some popular topologies are  
Fat-Tree[17], ElasticTree[18], VL2[7], PortLand[19], Jellyfish[20], Helios[21], 
c-Through[22], OSA[23] with a large number of switches. And some popular topologies are  
DCell[24], BCube[25], FiConn[26], MDCube[27],  PCube[28] with a large number of servers . 
In this paper, we adopt the fat-tree. 

The traditional tree structure is a hierarchical network topology, which is composed of a 
core layer, an aggregation layer and an access layer. In general, the core layer and the 
aggregation layer adopt some devices with good performance. The switch in the access layer 
provides some ports with 1Gbps downlink and 10Gbps uplink. Those downlinks are usually 
connected with the data center server while uplink with the aggregation layer. The aggregation 
layer switch is connected with the core layer with 10Gbps downlink and uplink. The 
traditional tree has the advantages of a simple structure and easy operation. However, this 
topology is only suitable for a small data center network.  

Now, due to multipath between a source host and a destination host, Fat-Tree is a good 
choice of simulating the topology of data center in a variety of researches. The Fat-Tree 
includes above three layers with some core switches and pods. A pod includes aggregation 
switches and edge switches. Given k-port, the number of core switches is (k/2)2, and the 
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number of pod is k.  k/2 edge switches and k/2 aggregation switches form a pod.  It is worth 
noting that a core switch is determined given a destination host. 

3.2 ECMP   
In the traditional data center network, the switch runs ECMP protocol with five tuples to get 
the output port. It is a static scheduling way. However, the process of ECMP in the SDN 
controller is not different from the traditional network. When a flow arrives in a switch without 
the corresponding flow entry in the flow table, the controller is consequently informed via the 
packet_in message. Furthermore, the controller gets the five tuples of the flow by processing 
the packet_in message, and then uses the cyclic redundancy check(CRC32) hash function to 
get the hash value. Eventually, a path is entirely selected from multiple equivalent paths in the 
light of the corresponding hash value. Instantly, the flow table information is sent to the 
switch. 

3.3 Traffic Monitoring   
As we know, collecting traffic is of great significance for flow scheduling. Fortunately, 
OpenFlow protocol has many messages of getting relevant information such as Read-State 
message. In a data center network, we just collect the traffic passing the edge switch.     When 
the collecting traffic timer is triggered, the controller sends the OFPT_STATS_REQUEST 
message to some edge switches. And then those switches send 
OFPT_STATS_REQUEST_RECEIED message to the controller in response. Then, the 
controller analyzes the statistical information to obtain the byte size and duration time of a 
flow from FlowStatsReceived event. The true transmission rate is calculated according to the 
Formula(1)[13]. Byte_count means the total byte number of a flow. The numerator is defined 
as the alive time of a flow in OpenFlow.   
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ndurationduration
countbyterate
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=            (1)

   
 

  

The rate tends to filter out the elephant flow (bandwidth greater than 10% link capacity) in 
the network to determine whether the flow is a newly detected flow or not. Because some 
elephant flows are more likely to cause the problem of path conflict. In view of the efficiency 
of traffic monitoring , it has been used in a variety of applications. 

                         
              

3.4 Bandwidth Demand Estimation  
Estimating the natural bandwidth demand of the current network is an essential part of the 
system architecture. We use bandwidth demand estimation [2]. A TCP flow’s current sending 
rate is not related to its natural bandwidth demand in an ideal non-blocking network. Thus, in 
order to make an intelligent flow placement decision, we need to know the max-min fair 
bandwidth allocation as if they are limited by the sender or receiver NIC. When a network 
limited, a sender will try to distribute its available bandwidth fairly among all its outgoing 
flows. Below, there is an example to explain the detailed calculation process in Fig. 1 .  
   Suppose there are four hosts in the current network (H0, H1, H2, and H3). H0 sends a flow to 
H1, H2 and H3 respectively . H1 sends two flows to H0 and a flow to H2; H2 sends a flow to 
H1 and H3 respectively. H3 sends two flows to H1. According to the Algorithm 1, at first it 
uses EST-SRC(h) to enlarge the demand with the same source node named the first demand 
matrix, then EST-DST(h) traverses all flows to reduce the same destination node bandwidth 
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demand named the second demand matrix. Thus, the bandwidth demand of all flows are not 
changed until the demand matrix are convergent. 
_______________________________________________________________________  

Algorithm 1: bandwidth demand estimation 
 _______________________________________________________________________ 

Estimate-Demands() 
1    for all src in M 
2      i, j ← 0 
3    do 
4      for all host h in H do EST-SRC(h) 
5      for all host h in H do EST-DST(h) 
6    while some M i, j .demand changed 
7    return M 
EST-DST(h.dst) 
1    dT， dS， nR ← 0 
2    for all flow f in F do 
3      f.rl ← true 
4      dT ←dT + f.demand 
5      nR ←nR + 1 
6    if dT ≤ 1.0 then 
7      return 
8    eS ← 1.0/nR 
9    do 
10     nR ← 0 
11     for all flow f in F do and f.rl do 
12       if f.demand < eS then 
13         dS ←dS + f.demand 
14         f.rl ← false 
15       else 
16         nR ←nR + 1 
17     eS ← (1.0−dS)/nR 
18   while some f.rl was set to false 
19   for all flow f in F do 
20     Mf.src,f.dst.demand ←eS 
21     Mf.src,f.dst.converged ← true 
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Fig. 1. An example of bandwidth estimation demand 
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3.5 Bandwidth resource recovery  
According to the residual bandwidth information of each link, the scheduling algorithm 
allocates a path for a flow in demand. When a flow completes, there exists the problem of 
cyclic bandwidth usage. In this paper, we try to leverage the idle_timeout mechanism of 
OpenFlow protocol and flow-removed message to recover the bandwidth on the link. When 
the duration time of a flow is beyond the idle_timeout, the flow entry is accordingly deleted in 
the flow table. Besides, the value of the idle_timeout can be set by the controller when the 
information is sent to the table. When the flow table is deleted, the switch sends the 
FlowRemoved message to the controller. At this point, we need to set the flag field for 1` in the 
flow table. After receiving the FlowRemoved message, the controller can obtain the assigned 
path and bandwidth of the flow. As a result, the bandwidth of all the links on the path will be 
recovered.  

4. Methodology 

We present our on-demand adaptive traffic scheduling mechanism in data center networks. 
The network adopts fat-tree by interconnecting the OpenFlow Switch and SDN controller with 
ECMP. The on-demand adaptive traffic scheduling and link bandwidth recovery can achieve 
network traffic and resource management, as shown in Fig. 2. We address SAGA and the 
on-demand traffic adaptive scheduling strategy in detail in this section. 
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Fig. 2. System Architecture 

4.1 SAGA 
SAGA is a combination of the genetic algorithm and the simulated annealing algorithm to 
enhance the ability of searching. As we know, the genetic algorithm has strong global search 
ability, but it is prone to premature convergence. While the simulated annealing algorithm 
uses the metropolis criterion to accept the inferior solution with a certain probability, it 
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effectively overcomes the premature convergence of genetic algorithm. In this paper, with the 
purpose of maximizing link bandwidth resource utilization, SAGA is used to search the global 
scheduling path in the network. It adopts the mapping between the host and the highest level 
switch. In a general network, the path searching without exceeding any link capacity is a 
multi-commodity flow problem, which is a NP hard problem. A scheduling algorithm based 
on SAGA is proposed to obtain the approximate optimal solution of the flow path. The model 
and some steps of SAGA will be described in the following. 

4.1.1 SAGA Model  
The SAGA model is described as follows: the data center network topology is defined 
as ( ),G S L ,where S presents a set of switches, { }1 2, , nS s s s=  ; L is a set of links, described  as 

{ }1 2, , , lL l l l=  . Then we set { }1 2
, , ,

ll l lC c c c=   to represent the capacity of the link and 

γ( { }1 2
= , ,

ll l lγ γ γ γ ) is a set of residual bandwidths in each link. 

Suppose that ( ) ( ) ( ){ }1 1 2 2, , , , , ,k kF f d f d f d= 
 is a set of flows needing to be scheduled, 

where di is the bandwidth demand of fi.; ( ) ( ) ( ){ }1 1 2 2, , , , , ,k kP p bw p bw p bw=  is a set of each 

flow allocation path. If fi. is allocated to pi ( { }1 2, , ,i i i ipp l l l=  ), bwi is the residual bandwidth of 
pi , which is present as Formula (2)[2].  
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where api is the minimal bandwidth of pi.. 
The total link bandwidth utilization of all flows is described as Formula (3): 
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The numerator represents the sum of the reserved bandwidth of each link on all paths. The 
denominator represents the sum of the capacity of each link on all flow scheduling paths. K 
represents the number of flows that the network needs to schedule. P is the number of links on 
the flow to be allocated path. M represents the sum of all links. 

The purpose of the algorithm model is to maximize the bandwidth utilization, so it is 
defined as Formula(4). But the reserved bandwidth in the scheduling path does not exceed the 
natural bandwidth demand of the flow. The sum of the reserved bandwidth in each link does 
not exceed the capacity of the link. The sum of reserved bandwidth in all scheduling paths 
does not exceed the capacity of all links. 
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  The ultimate goal of flow scheduling is to utilize the reasonable network resources and 
improve the bandwidth utilization of the network. Therefore, we use UF as the fitness function 
in SAGA.  

4.1.2 Chromosome encoding  
Fat-Tree provides an equivalent path for a pair of source and destination hosts in a network. 
The flow between two hosts connecting the same edge switch directly forwards from the edge 
switches. At the meantime, a flow in the same pod without connecting the same edge switch 
forwards from the corresponding aggregation switch. Other flows in the different pods need to 
be forwarded by the core switch. The same flow chooses different aggregation switches or 
core switches, which results in the corresponding different paths. Therefore, the genetic 
algorithm will take the mapping of a host and an aggregation switch or core switch to locate 
the downlink of the flow. Since the flow with the host reaching the same destination is 
assigned to the corresponding aggregation switches or core switches, the genetic algorithm 
search space is greatly reduced.  

( )( )
( )

2_ _ mod 2

_ _ mod 2

CoreSwitch ID DstHost ID k

AggSwitch ID DstHost ID k

 =


=

                                 (5) 

  For a Fat-Tree level K topology with a total of (k/2) 2 core switches, a core switch id 
(CoreSwitch_ID) is limited in between 1 and k/2 as well as the aggregation switch id 
(AggSwitch_ID) in {1,2,... k/2}. The size of the chromosome is equal to the total number of the 
destination host, which is determined by the host number of the current network flow. The 
value in chromosome gene is the id of the destination host(DstHost_ID). The destination host 
is mapped to the highest level switch of the scheduling path (the core switch or the aggregation 
switch). So we adopt the mapping according to Formula(5). For instance, when k is 4, the 
chromosome {3,5,4,3,2} indicates the total number of hosts is 5. The flow with destination 
host (ID=3) in an inter-pod is assigned to the core switch (ID=3), whereas it is assigned to the 
aggregation switches (ID=1) in an intra-pod. 

4.1.3 Genetic Operations 
Genetic operations consist of a selection operation, a mutation operation and a crossover 
operation. The selection operation is selected from the original group according to a given rule. 
In this paper, it adopts the biased roulette wheel to select. According to the fitness value, it 
selects the parent individual. The selection probability is shown in the Formula (5) . fi is 
defined as the fitness value of an individual. 

    

1

i
i M

i
i

fp
f

=

=

∑
                                                      (5) 

The crossover operation may produce some new chromosomes by exchanging and 
recombining. As a result, it will come into being new individuals. In this paper, a single point 
crossover is used to select an individual in their neighbor at random. Then, the mapping 
between a destination host and a highest switch is naturally changed. In other   words, the 
corresponding path of a flow is automatically changed.  

The mutation operation selects two chromosomes at random. Then the genes of the 
chromosome are exchanged in some probability. 
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4.1.4 Simulated Annealing 
The metropolis criteria of SA are used to determine whether to accept a new individual or not. 
Metropolis criteria are shown in the Formula (6).  

( )
1                          

, ,
exp      

n

n n
n

if f f
P f f T f f if f f

KT

≥
= −   <                        

               (6) 

   Formula (6) represents the acceptable probability of an individual. f means the fitness value 
of an old individual while fn  a new individual. If fn is greater than or equal to f, the old 
individual will be replaced with a new individual where the acceptable probability is 1. 
Otherwise, the new individual is generally accepted in some probability.  
  SAGA includes: 
① Initialize control parameters (the species size, initial temperature, crossover probability 

and mutation probability) .           
② Encode the chromosomes according to the destination host.               
③ Get the fitness value of each individual according to the initial path.  
④ Carry out the genetic operation and get new species. 
⑤ Select an individual according to the metropolis criteria .  
⑥ Update the corresponding path and the demand.   

It is depicted in Fig. 3 in detail. Assuming that the number of iteration is n and the size of 
species is f , its time complexity is O(n*f).  
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Fig. 3.  SAGA steps in detail 
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When the adaptive scheduling strategy filters out some flows, SAGA schedules them to 
allocate available paths. In the following, we will introduce the adaptive strategy. 

4.2 On-demand Traffic Adaptive Scheduling Strategy   
In a multi-rooted tree topology, there are several possible equal-cost paths between any pair of 
source and destination hosts. When a new large flow is detected, (e.g.10% of the host’s link 
capacity),the scheduler linearly searches all possible paths to find one whose link components 
can all accommodate that flow. If a path is found, then that flow is placed on that path. 
Choosing some elephant flows is a prerequisite. On-demand traffic adaptive scheduling 
strategy considers not only the bandwidth of network resource usage, but also the effect of the 
demand. The change of the flow bandwidth demands in the current network has an effect on 
the estimation bandwidth demand after adding the new flow. And according to the natural 
flow bandwidth demand, the current network bandwidth resources should be dispatched 
reasonably.  

When the flow in the network reaches the OpenFlow switch, the data packet is forwarded 
by the default ECMP, meanwhile, the controller stores the ECMP information. In addition, the 
adaptive flow controlling module filters out the elephant flow set (ElephantFlows) in the 
network according to the flow statistics. At the same time, it is important to choose the flow set 
(ScheduleFlows) that needs to be scheduled judging from the adaptive scheduling strategy. 
Because some flows satisfying their bandwidth demands can be scheduled on previous paths, 
it can reduce the load of the controller. The chosen strategy algorithm is described in 
Algorithm 2. If the total number of flows that need to be scheduled is F, the time complexity 
will be O(F). Eventually, it may calculate a new path by using SAGA in the light of the status 
of the resource usage in the current network,  and update the OpenFlow switch information. 
The above process is shown in Fig. 4.  

 _______________________________________________________________________  
Algorithm 2: the chosen strategy based on bandwidth demand changing  

 _______________________________________________________________________ 
 1    for all flow f in Elephantflows do 
 2      if f.assigned = False then 
 3        ScheduleFlows ←ScheduleFlows∪{f} 
 4        DstHostList ←DstHostList∪{f.dstIP} 
 5      else  
 6        if f.new_demand < f.old_demand 
 7          for all links in f.path do 
 8            FreeBW[l] ← FreeBW[l] + f.old_demand - f.new_demand 
 9        else if f.new_demand > f.old_demand then 
 10         IncreaseFlows ←IncreaseFlows∪{f} 
 11      end if 
 12     end if 
 13   end for 
 14   for all flow f in IncreaseFlows do 
 15     if All links in f.path satisfy FreeBW > f.new_demand - f.old_demand then 
 16       for all link l in f.path do 
 17         FreeBW[l] ← FreeBW[l] + f.old_demand - f.new_demand 
 18     else 
 19       for all link l in f.path do 
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 20         FreeBW[l] ← FreeBW[l] + f.old_demand 
 21         ScheduleFlows ← ScheduleFlows∪{f} 
 22         DstHostList ←DstHostList∪{f.dstIP} 
 23     end if 
 24   end for 
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Fig. 4.  On-demand adaptive traffic scheduling 

  
  The adaptive scheduling strategy chooses the flow satisfying the demand to schedule on the 
basis of the Algorithm 2. Thus, SAGA does not necessarily schedule all flows in all paths.    

5. mplementation and evaluation  

We have implemented our flow scheduling algorithm which is based on the POX [28] 
controller and Mininet [29]. Providing a good definition of API is the purpose of POX. 
Mininet should be a lightweight virtualization technology to simulate the network 
environment with multiple hosts, switches and links. The goal of our test is to determine the 
aggregate bisection bandwidth in various traffic patterns.  
  In the Fat-Tree topology, the traffic can be divided into the three kinds by switch types. They 
include: 
(1) Intra-rack traffic: a host sends to a host in the same edge switch. 
(2) Intra-pod traffic: a host sends to a host in the same pod.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017                              5255 

(3) Inter-pod traffic: a host sends to a host in the different pods.  
  In the following, four communication models[2] are used in the experimental simulation.  
(1) Stride(i): a host with x communicates with host with index(x+i) mod 16. 
(2) Staggered Prob (Edge_P，Pod_P)：a host communicates with another host in the same 
edge switch by Edge_P, and to its same pod by Pod_P, and to the rest of the network by 
1-Edge_P-Pod_P. 
(3) Random: a host sends to any other host in the network with uniform probability. 
(4) Randombij: a host communicates with the other hosts in some mapping. 

5.1 Analysis of bisection bandwidth 
We test the bisection bandwidth with different scheduling algorithms in the different 
communication models: stride, staggered, random and randombij, which are shown in Fig. 5, 
6, 7, 8, respectively. Non-blocking is an ideal state without any limits. In the stride 
communication pattern, we choose stride(1),stride(2), stride(4) and stride(8). Three traffic 
types are distributed as Table 1. with the increase of the parameter i, the average bandwidth 
gradually decreases. The reason is that the inter-pod flow rate of the communication pattern 
will increase. The adding inter-pod flow will lead to the extra link load of the core layer and 
the congestion of some links. In each stride, SAGA is almost equal to SA except for stride(2). 
In stride(2), SAGA performs better than SA with about 5.86 Mb/s. Because the traffic has two 
kinds of intra-pod and inter-pod in that communication patter. SAGA considers just the two 
kinds patters. SAGA is better than GFF with 20 Mb/s and outperforms ECMP with 30 Mb/s in 
all stride case. Because SAGA can schedule flows to different core and aggregation switches, 
which reduces the load in the network.   
 

Table 1.  Rate of three traffic types 
Stride(i) Intra-rack  Intra-pod Inter-pod 
Stride(1) 50% 25% 25% 
Stride(2) 0% 50% 50% 
Stride(4) 0% 0% 100% 
Stride(8) 0% 0% 100% 

 

 
Fig. 5.  Average bisection bandwidth in Stride(i) 
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In the staggered communication pattern, we test in staggered(0.2,0.3) , staggered(0.2,0.5) and 
staggered(0.5,0.3). Each pattern has three groups. The bisection bandwidth of SAGA is about 
145 Mb/s in all communication patters. As a whole, SAGA outperforms ECMP, GFF and SA. 
Especially, SA is 12.3% lower than SAGA in stag2(0.2,0.3) . Because 50% inter-pod traffic 
and 30% intra-pod traffic exist in this patter. SA only considers the different pod instead of the 
same pod, nevertheless SAGA considers the two kinds of flow scheduling. GFF is 30% lower 
than SAGA in stag0(0.2,0.3). Due to the dynamic scheduling mechanism, SAGA can schedule 
the flow according to the dynamic demand. The bisection bandwidth in stag(0.2,0.3) is lower 
than stag(0.5,0.3) for all algorithms, because the traffic passing a core switch is added in 
stag(0.2,0.3) , which causes more load in the core switch with a low link utilization. However, 
no matter what, SAGA outperforms other algorithms.  

 
Fig. 6. Average bisection bandwidth in StaggeredProb 

 

In random communication pattern, we run experiment for three groups. In the best case, 
SAGA outperforms SA with 8.12 Mb/s. Since the host within the pod randomly sends traffic 
to the destination host, the random mapping method of between the destination host and the 
top switch in SAGA has greater advantages over searching current scheduling path of the 
approximate optimal solution. The average bisection bandwidth is about 20 Mb/s higher than 
others in the case. 

 
Fig. 7.  Average bisection bandwidth in Random 
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In randombij, we run experiment for three groups. Since the mapping between the host the 
highest switch, which contributes to adding the scale of searching spaces, SAGA is about 
15.23 Mb/s lower than SA at the worst case. Given the dynamic scheduling mechanism, 
SAGA still outperforms GFF and ECMP.  
 

 
Fig. 8.  Average bisection bandwidth in Randombij  

 
In order to verify the scalability of the algorithm, we compare SAGA with Ashman-BestFit. 
Ashman-ProFit. Ashman-BestFit and Ashman-ProFi are proposed to reduce the fragment. It is 
described in Fig. 9, 10, 11, 12.  In stride, SAGA is higher than Ashman-BestFit with 15.76 
Mb/s and  Ashman-ProFi with 7.68 Mb/s. However, SAGA is slightly lower than 
Ashman-ProFi in stride(4) and Ashman-BestFit in stride(8). Because there is only inter-pod 
traffic in stride(4) and stride(8). The mapping of SAGA may add the range of searching the 
best path. And in randombij, SAGA is lower than Ashman-BestFit with 4.13 Mb/s. In 
staggered and random, the average bisection bandwidth of SAGA is higher than 
Ashman-BestFit and Ashman-ProFit.  

 
Fig. 9.  Average bisection bandwidth in Stride(i) 
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Fig. 10.  Average bisection bandwidth in StaggeredProb 

 
Fig. 11.  Average bisection bandwidth in Random 

 
Fig. 12.  Average bisection bandwidth in Randombij 
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5.2 Analysis of convergence time 
In order to explore the convergence time in SAGA, we tested it in above communication 
patters. We show in Table 2 the average convergence time. In Staggered and random 
communication mode, the average convergence time of SA is less than SAGA. Because 
SAGA takes into account the traffic scheduling between the same pod, the range of searching 
increases. In the above two modes, the bisection bandwidth obtained by SAGA is higher than 
SA, thus verifying that SAG increases the search time to achieve high bandwidth. However, in 
Stride4 and Stride8 communication modes, the average convergence time of SA is greater than 
SAGA. On the one hand, because the traffic between the scheduling only involves traffic 
scheduling between two different pods, SAGA reduces the search scope. On the other hand, 
SAGA selects some urgent scheduled flows according to the adaptive scheduling mechanism, 
so the number of flow needed to be scheduling may be less than SA. In the randombij model, 
the average convergence time of SA is greater than SAGA. Since the traffic in this mode is 
mapped by one to one, the mapping between the host and the core switches used by SA can 
obtain the optimal solution. Due to the small range of search in SAGA , so it may not get the 
best solution and verify that the SA two bandwidth higher than SAGA at the same time. 
 
                       Table 2.  Average convergence time (s) 

Communication 
Patterns 

SA SAGA 

Stag_0_2_3 0.4573   0.8914 
Stag_1_2_3                             0.4321 0.7833 
Stag_2_2_3                             0.4993 0.7220 
Stag_0_5_3                             0.2740 0.6653 
Stag_1_5_3                             0.3200 0.7380 
Stag_2_5_3                             0.3386 0.7533 

Stride1                                 0.2440 0.6113 
Stride2                                0.4160 0.7653 
Stride4                                 1.1526 0.7160 
Stride8                                0.8513 0.7913 

Random0                               0.6626 0.6840 
Random1                               0.5426 0.5873 
Random2                              0.5493 0.7693 

Random0_bij                            0.5426 0.5300 
Random1_bij                            0.7486 0.7340 
Random2_bij                            0.6613 0.6413 

 

5.3 Scalability 
To evaluate the scalability of our scheduling algorithm, we tested the algorithm in k=6. The 
parameter is set as Table 3. Because of the difference of the two kinds of topological total 
bisection bandwidth, the average bisection bandwidth rate of many algorithms was compared 
and analyzed, as shown in Fig. 13. We can see from the figure, with the increase of the 
network size, the average bandwidth of each traffic scheduling algorithm is decreased. 
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Because the scale is bigger, the searching space is wider. In summary, the result show that the 
SAGA based on adaptive demand scheduling strategy has an advantage over other existing 
scheduling approaches for data centers.  
 

  Table 3.  The total bisection bandwidth in different network scale 
Scale Core switch Aggregation 

switch 
Edge switch Host Total bisection 

bandwidth 
k=4 4 8 8 16 160Mbps 
k=6 9 18 18 54 270Mbps 

 

 
Fig. 13.  Average bisection bandwidth in random  

6. Conclusion 

Since the problem of low link bandwidth utilization in data center network is gradually 
addressed in more hot fields, and previous approaches fail to schedule according to their 
demands in real time, this paper presents the SAGA strategy based on the adaptive traffic 
scheduling mechanism through software defined network technology. Due to the good 
features in fat-tree with the high degree of available path diversity, SAGA based on adaptive 
traffic scheduling mechanism considers not only the communication in the different pods, but 
also the communication in the same pod. In addition, recovering resources is included in our 
module. Experimental results show that SAGA based on traffic adaptive scheduling 
mechanism achieves higher bisection bandwidth than those of ECMP, GFF, SA, 
Ashman-BestFit and Ashman-ProFit. We believe that our scheduling mechanism can better 
facilitate bandwidth resources in links and improve network utilization. However, the 
threshold for filtering out flows is set by hand. And our way shows the shortage in randombij. 
In the future, we will focus on getting the threshold dynamically and narrowing the searching 
space. 
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