
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, Nov. 2017 5243
Copyright ⓒ2017 KSII

An Improved Adaptive Scheduling Strategy

Utilizing Simulated Annealing Genetic
Algorithm for Data Center Networks

Wentao Wang1, Lingxia Wang1, Fang Zheng1

1 College of Computer Science, South-Central University for Nationalities
Wuhan 430074, China

[E-mail: 30307095@qq.com; wanglingxiawlx@163.com; 294081300@qq.com]

Received March 12, 2017; revised June 26, 2017; accepted July 17, 2017;
published November 30, 2017

Abstract

Data center networks provide critical bandwidth for the continuous growth of cloud
computing, multimedia storage, data analysis and other businesses. The problem of low link
bandwidth utilization in data center network is gradually addressed in more hot fields.
However, the current scheduling strategies applied in data center network do not adapt to the
real-time dynamic change of the traffic in the network. Thus, they fail to distribute resources
due to the lack of intelligent management. In this paper, we present an improved adaptive
traffic scheduling strategy utilizing the simulated annealing genetic algorithm (SAGA).
Inspired by the idea of software defined network, when a flow arrives, our strategy changes the
bandwidth demand dynamically to filter out the flow. Then, SAGA distributes the path for the
flow by considering the scheduling of the different pods as well as the same pod . It is
implemented through software defined network technology. Simulation results show that the
bisection bandwidth of our strategy is higher than state-of-the-art mechanisms.

Keywords: scheduling; adaptive methods; simulated annealing genetic algorithm; software
defined network; data center

The research presented in this paper is supported by the following projects “the National Committee for
reform of the National People’s Committee”, ID:15013

https://doi.org/10.3837/tiis.2017.11.004 ISSN : 1976-7277

mailto:30307095@qq.com
mailto:wanglingxiawlx@163.com

5244 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

1. Introduction

In recent years, Internet online business (e.g., searching, transacting, contacting) has been
growing rapidly. In order to meet the increasing transaction need, cloud computing has been
widely concerned in industry and academy[1]. In the infrastructure of cloud computing, a data
center network plays a significant role in the interconnect dedicated links and switches.
However, as businesses continue to extend, how to allocate the proper bandwidth demand
presents a special challenge.
 The development of the business and the use of new technologies have brought new
challenges to the data center network. Especially, flow scheduling is very significant in data
centers, which aim at providing enough bisection bandwidth for popular applications.
 There have been flow scheduling approaches in the last years. They are generally classified
into centralized traffic scheduling and distributed traffic scheduling. Hedera[2],
Ashman-BestFit, Ashman-ProFit[3], MicroTE[4], FreeWay[5] and a Coarse-grained
Scheduling[6] are popular centralized traffic scheduling. They intend to rely on some
controllers to monitor the path allocation as a passive way. On the other hand, VLB (Valiant
Load Balancing)[7], DRAD[8] and DiFS[9] are popular distributed traffic scheduling. They
do not need a controller to schedule some flows as an active way.
 Though the existing flow scheduling approaches can promote more bisection bandwidth,
they not only create path conflicts, but also are lack of intelligent management. Since the flow
can not be scheduled according to the self-demand, they fail to take full advantage of the link
resource to achieve high bisection bandwidth.
 The rise of SDN provides a new idea of solving the problem of the data center network. SDN
is an innovative network architecture and stems from Stanford University in the United States
in 2006 clean slate research project. Especially, its core is the separation of the control plane
and the traditional distributed network devices in order to realize the centralized control of
them. The centralized control can obtained by some similar network operating systems.
Naturally, the centralized control provides flexible developing and programming interfaces
while the network device is only responsible for simple data forwarding[10-12]. When the
controller starts, OpenFlow[13-15] switches try to open a secure channel to the controller.
After some switches are connected to the controller, the controller can start to manage
different modules. As a result, it enables us to perform query, insert and modification about
some flow entries. OpenFlow protocol includes some special features that can be leveraged to
realize our idea. It is worth noting that the controller has many functions using a variety of
listener events to improve the performance of our experiments. Therefore, compared with
some traditional scheduling ways, the genetic algorithm is a good choice by combining
different algorithms.
 The genetic algorithm is a kind of global search algorithms. It can use some operations to get
different species. And an adaptive scheduling algorithm [16] is used to cope with the problem
of multimedia traffic. We can deal with the problem of the flow scheduling by a dynamic
scheduling mechanism with SAGA. In this paper, we improve the scheduling mechanism by
updating the bandwidth demand and recovering the path bandwidth. And we propose SAGA
(simulated annealing genetic algorithm) taking full advantage of the link sources. It considers
the communication in the different pods as well as the same pod.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5245

our contribution includes:
1. We improve a choosing flow strategy to filters out flows in need for scheduling based

on the dynamic demand in real time t to lower the load of the controller.
2. SAGA considers the scheduling of the different pod as well as the same pod based on

the changing demand to facilitate the bandwidth resources of the network link and improves
the network bandwidth utilization.
 This paper is organized as follows. We overview the related work in Section 2. Section 3
introduces the background about the scheduling strategy. We address the SAGA and adaptive
scheduling strategy in Section 4. Section 5 describes the implementation and evaluation.
Finally, we conclude this paper in Section 6.

2. Related work

There have been recent efforts for addressing various flow scheduling methods to improve
the bisection bandwidth. In all, all research is classified into two categories: centralized traffic
scheduling and distributed traffic scheduling.

2.1 Centralized Traffic Scheduling
 The traditional way adopts ECMP (Equal Cost Multipath). It statically strips flows across
available paths and then produces some path conflicts. Those conflicts will result in serious
congestion. In order to deal with the above problem, hedera[2] is presented by designing GFF
(Global First Fit) algorithm and SA (simulated annealing) algorithm.
 GFF is a kind of greedy strategy, which can find the first path to satisfy the demand of flow
bandwidth by searching each flow. Though GFF takes the remaining path bandwidth into
account, it fails to consider the already changing demand due to the effect of the added flow on
the previous flow. SA is a global heuristic algorithm. On one hand, the key insight of SA is to
assign a single core switch for each destination host. This only considers the communication in
different pods. However, the communication in the same pod also exists. On the other hand,
the link is regarded as an idle state in each SA scheduling period, and then the global
scheduling of all flows is performed, which makes frequent replacement of the path.
Unfortunately, the scheduled path may be in the non-idle state which will cause the flow
conflict. And the frequent path replacement will also increase the controller load.
 Hedera remains more fragments in allocating bandwidths. In order to take advantage of
fragments, Ashman-BestFit and Ashman-ProFit are raised gradually. Ashman-BestFit
allocates the path to the flow with the closest to the bandwidth demand. But it is possible to
cause many flows to be scheduled on the same link, which leads to the frequent usage of the
partial links while the other idle. Ashman-ProFit sets up the allocation probability for each
candidate path. If the path bandwidth is closer to the bandwidth demand, the more likely the
path will be allocated to the flow.

A fine-grained flow engineering scheme based on MicroTE is proposed with monitoring
module, a network controller and a routing module to reduce the workload of network
equipment.

2.2 Distributed Traffic Scheduling
 VLB (Valiant Load Balancing) [7] is adopted to balance the load. Each server randomly

5246 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

selects each flow to a relay switch, and then selects a path to the destination host. It is a static
way of flow scheduling. To deal with the scalability of centralized traffic scheduling, DRAD
[8] allocates many multiple level IP for terminal hosts to forward data packets. Each switch on
all paths is necessary to be monitored to get the state of links. But DRAD has the upgrading of
the protocol and the complexity of monitoring. So DiFS[9] is proposed, which does not ask for
centralized control and not allow to split a flow. Therefore, it will avoid the disorder of the
packet. But there are the local and remote flow conflict in DiFS. The local flow is in the same
pod while the remote flow in the different pod. DiFS needs to avoid these two types of
conflicts in respect and weighs the traffic load. On the whole, the way of avoiding the local
conflict is simple. Each switch uses PAA (Path Allocation Algorithm) to send evenly traffic to
all the ports in order to avoid the local conflict. However, the way of avoiding the remote
conflict is relatively complex. At first, IDA (Imbalance Detection Algorithm) is used to detect
some links that are connected with the switch. After a collision is detected, the switch will
send an EAR (Explicit Adaption Request) message to change the switch path. When the EAR
message is received, EAA (Explicit Adaption Algorithm) is carried out to avoid remote flow
conflict. Those above distributes traffic scheduling methods add more loads to the controller.
 Even though the existing scheduling methods can deal with the shortage of multipath, they
are lack of intelligent management and adaptive scheduling.

3. Background

In this section, we introduce the topology, ECMP, traffic monitoring, bandwidth demand
estimation and bandwidth resource recovery. The topology is simulated with popular fat-tree
in data centers, from which the controller can collect detailed information. ECMP is called to
bring the basic state of the flow as the start of the system. The main purpose of the traffic
monitoring is to filter out the elephant flow for scheduling. Bandwidth demand estimation is
aimed at estimating the demand as a threshold. Bandwidth resource recovery saves resources
to make full use of the bandwidth. Each is described in detail below.

3.1 Topology
The traditional topology is improved in switches and servers. Some popular topologies are
Fat-Tree[17], ElasticTree[18], VL2[7], PortLand[19], Jellyfish[20], Helios[21],
c-Through[22], OSA[23] with a large number of switches. And some popular topologies are
DCell[24], BCube[25], FiConn[26], MDCube[27], PCube[28] with a large number of servers .
In this paper, we adopt the fat-tree.

The traditional tree structure is a hierarchical network topology, which is composed of a
core layer, an aggregation layer and an access layer. In general, the core layer and the
aggregation layer adopt some devices with good performance. The switch in the access layer
provides some ports with 1Gbps downlink and 10Gbps uplink. Those downlinks are usually
connected with the data center server while uplink with the aggregation layer. The aggregation
layer switch is connected with the core layer with 10Gbps downlink and uplink. The
traditional tree has the advantages of a simple structure and easy operation. However, this
topology is only suitable for a small data center network.

Now, due to multipath between a source host and a destination host, Fat-Tree is a good
choice of simulating the topology of data center in a variety of researches. The Fat-Tree
includes above three layers with some core switches and pods. A pod includes aggregation
switches and edge switches. Given k-port, the number of core switches is (k/2)2, and the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5247

number of pod is k. k/2 edge switches and k/2 aggregation switches form a pod. It is worth
noting that a core switch is determined given a destination host.

3.2 ECMP
In the traditional data center network, the switch runs ECMP protocol with five tuples to get
the output port. It is a static scheduling way. However, the process of ECMP in the SDN
controller is not different from the traditional network. When a flow arrives in a switch without
the corresponding flow entry in the flow table, the controller is consequently informed via the
packet_in message. Furthermore, the controller gets the five tuples of the flow by processing
the packet_in message, and then uses the cyclic redundancy check(CRC32) hash function to
get the hash value. Eventually, a path is entirely selected from multiple equivalent paths in the
light of the corresponding hash value. Instantly, the flow table information is sent to the
switch.

3.3 Traffic Monitoring
As we know, collecting traffic is of great significance for flow scheduling. Fortunately,
OpenFlow protocol has many messages of getting relevant information such as Read-State
message. In a data center network, we just collect the traffic passing the edge switch. When
the collecting traffic timer is triggered, the controller sends the OFPT_STATS_REQUEST
message to some edge switches. And then those switches send
OFPT_STATS_REQUEST_RECEIED message to the controller in response. Then, the
controller analyzes the statistical information to obtain the byte size and duration time of a
flow from FlowStatsReceived event. The true transmission rate is calculated according to the
Formula(1)[13]. Byte_count means the total byte number of a flow. The numerator is defined
as the alive time of a flow in OpenFlow.

99 10/sec)_10sec_(
)201/()_8(

ndurationduration
countbyterate
+×

<<×
= (1)

The rate tends to filter out the elephant flow (bandwidth greater than 10% link capacity) in
the network to determine whether the flow is a newly detected flow or not. Because some
elephant flows are more likely to cause the problem of path conflict. In view of the efficiency
of traffic monitoring , it has been used in a variety of applications.

3.4 Bandwidth Demand Estimation
Estimating the natural bandwidth demand of the current network is an essential part of the
system architecture. We use bandwidth demand estimation [2]. A TCP flow’s current sending
rate is not related to its natural bandwidth demand in an ideal non-blocking network. Thus, in
order to make an intelligent flow placement decision, we need to know the max-min fair
bandwidth allocation as if they are limited by the sender or receiver NIC. When a network
limited, a sender will try to distribute its available bandwidth fairly among all its outgoing
flows. Below, there is an example to explain the detailed calculation process in Fig. 1 .
 Suppose there are four hosts in the current network (H0, H1, H2, and H3). H0 sends a flow to
H1, H2 and H3 respectively . H1 sends two flows to H0 and a flow to H2; H2 sends a flow to
H1 and H3 respectively. H3 sends two flows to H1. According to the Algorithm 1, at first it
uses EST-SRC(h) to enlarge the demand with the same source node named the first demand
matrix, then EST-DST(h) traverses all flows to reduce the same destination node bandwidth

5248 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

demand named the second demand matrix. Thus, the bandwidth demand of all flows are not
changed until the demand matrix are convergent.

Algorithm 1: bandwidth demand estimation

Estimate-Demands()
1 for all src in M
2 i, j ← 0
3 do
4 for all host h in H do EST-SRC(h)
5 for all host h in H do EST-DST(h)
6 while some M i, j .demand changed
7 return M
EST-DST(h.dst)
1 dT， dS， nR ← 0
2 for all flow f in F do
3 f.rl ← true
4 dT ←dT + f.demand
5 nR ←nR + 1
6 if dT ≤ 1.0 then
7 return
8 eS ← 1.0/nR
9 do
10 nR ← 0
11 for all flow f in F do and f.rl do
12 if f.demand < eS then
13 dS ←dS + f.demand
14 f.rl ← false
15 else
16 nR ←nR + 1
17 eS ← (1.0−dS)/nR
18 while some f.rl was set to false
19 for all flow f in F do
20 Mf.src,f.dst.demand ←eS
21 Mf.src,f.dst.converged ← true

() () ()
() ()
() ()

()

1 1 1

0
2 1

0
1 1

0 0
2

1 1 1
3 3 3

1 1
3 0

0

0 0

3

1 1
2 2

1
2

 
 
 
 
 
 
 
 
  

() ()
()

()

1 1 1

0
2 1

0
11

0 0
2

1 1
3 3

1 03

10 2

0

1
3

1
3

1
3

1
3 0

  
  

 
    ⇒
  
  
 

    

() ()
()

()

1 1 1

0
2 1

0
1 1

0 0
2

1 1 1
3 3 3

1 1 03 3

1 03

10

2

3

3

0

  
  

 
    ⇒
  
  
 

    

()
()

1 1 1

0
2 1

0
1 1

0 0
2

1 1 1
3 3 3

1 1 03 3

1 203 3

10 03

    
    

 
    ⇒
    
    
 

    

Fig. 1. An example of bandwidth estimation demand

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5249

3.5 Bandwidth resource recovery
According to the residual bandwidth information of each link, the scheduling algorithm
allocates a path for a flow in demand. When a flow completes, there exists the problem of
cyclic bandwidth usage. In this paper, we try to leverage the idle_timeout mechanism of
OpenFlow protocol and flow-removed message to recover the bandwidth on the link. When
the duration time of a flow is beyond the idle_timeout, the flow entry is accordingly deleted in
the flow table. Besides, the value of the idle_timeout can be set by the controller when the
information is sent to the table. When the flow table is deleted, the switch sends the
FlowRemoved message to the controller. At this point, we need to set the flag field for 1` in the
flow table. After receiving the FlowRemoved message, the controller can obtain the assigned
path and bandwidth of the flow. As a result, the bandwidth of all the links on the path will be
recovered.

4. Methodology

We present our on-demand adaptive traffic scheduling mechanism in data center networks.
The network adopts fat-tree by interconnecting the OpenFlow Switch and SDN controller with
ECMP. The on-demand adaptive traffic scheduling and link bandwidth recovery can achieve
network traffic and resource management, as shown in Fig. 2. We address SAGA and the
on-demand traffic adaptive scheduling strategy in detail in this section.

ECMP

On-demand adaptive traffic scheduling

Bandwidth
demand

estimation

Traffic
monitoring

Fat-tree topology

Bandwidth
recovery

residual
bandwidth

ElephantFlows

Flow
StateR
eply

Flow
M
odify

PacketIn
Flow
M
odify

OpenFlow
switch

Flow table
information

Controller

 Flow
StateR
equest

Scheduling
flow selection
strategy based
on bandwidth

demand change Sc
he

du
leF

lo
wsPath

allocati
on

based
on

SAGA

Fig. 2. System Architecture

4.1 SAGA
SAGA is a combination of the genetic algorithm and the simulated annealing algorithm to
enhance the ability of searching. As we know, the genetic algorithm has strong global search
ability, but it is prone to premature convergence. While the simulated annealing algorithm
uses the metropolis criterion to accept the inferior solution with a certain probability, it

5250 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

effectively overcomes the premature convergence of genetic algorithm. In this paper, with the
purpose of maximizing link bandwidth resource utilization, SAGA is used to search the global
scheduling path in the network. It adopts the mapping between the host and the highest level
switch. In a general network, the path searching without exceeding any link capacity is a
multi-commodity flow problem, which is a NP hard problem. A scheduling algorithm based
on SAGA is proposed to obtain the approximate optimal solution of the flow path. The model
and some steps of SAGA will be described in the following.

4.1.1 SAGA Model
The SAGA model is described as follows: the data center network topology is defined
as (),G S L ,where S presents a set of switches, { }1 2, , nS s s s=  ; L is a set of links, described as

{ }1 2, , , lL l l l=  . Then we set { }1 2
, , ,

ll l lC c c c=  to represent the capacity of the link and

γ({ }1 2
= , ,

ll l lγ γ γ γ) is a set of residual bandwidths in each link.

Suppose that () () (){ }1 1 2 2, , , , , ,k kF f d f d f d= 
 is a set of flows needing to be scheduled,

where di is the bandwidth demand of fi.; () () (){ }1 1 2 2, , , , , ,k kP p bw p bw p bw=  is a set of each

flow allocation path. If fi. is allocated to pi ({ }1 2, , ,i i i ipp l l l= ), bwi is the residual bandwidth of
pi , which is present as Formula (2)[2].

i

i i

i p i

i

p p i

d if d
bw

if d

α

α α

≥= 
<

 (2)

where api is the minimal bandwidth of pi..
The total link bandwidth utilization of all flows is described as Formula (3):

 1 1

1

ipk

i ij i

m

i
q

lp

i
p p l l

F l

l
l l

bw
U

c

= =

=

=
∑ ∑

∑
 (3)

The numerator represents the sum of the reserved bandwidth of each link on all paths. The
denominator represents the sum of the capacity of each link on all flow scheduling paths. K
represents the number of flows that the network needs to schedule. P is the number of links on
the flow to be allocated path. M represents the sum of all links.

The purpose of the algorithm model is to maximize the bandwidth utilization, so it is
defined as Formula(4). But the reserved bandwidth in the scheduling path does not exceed the
natural bandwidth demand of the flow. The sum of the reserved bandwidth in each link does
not exceed the capacity of the link. The sum of reserved bandwidth in all scheduling paths
does not exceed the capacity of all links.

maximize FU (4)

 s.t., i ibw d≤ ;

i

i

l
l

bw c≤∑

;

 1 11

ipk m

i
i ij qi

lp l

i l
p p l l l l

bw c
= = =

≤∑ ∑ ∑

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5251

 The ultimate goal of flow scheduling is to utilize the reasonable network resources and
improve the bandwidth utilization of the network. Therefore, we use UF as the fitness function
in SAGA.

4.1.2 Chromosome encoding
Fat-Tree provides an equivalent path for a pair of source and destination hosts in a network.
The flow between two hosts connecting the same edge switch directly forwards from the edge
switches. At the meantime, a flow in the same pod without connecting the same edge switch
forwards from the corresponding aggregation switch. Other flows in the different pods need to
be forwarded by the core switch. The same flow chooses different aggregation switches or
core switches, which results in the corresponding different paths. Therefore, the genetic
algorithm will take the mapping of a host and an aggregation switch or core switch to locate
the downlink of the flow. Since the flow with the host reaching the same destination is
assigned to the corresponding aggregation switches or core switches, the genetic algorithm
search space is greatly reduced.

()()
()

2_ _ mod 2

_ _ mod 2

CoreSwitch ID DstHost ID k

AggSwitch ID DstHost ID k

 =


=

 (5)

 For a Fat-Tree level K topology with a total of (k/2) 2 core switches, a core switch id
(CoreSwitch_ID) is limited in between 1 and k/2 as well as the aggregation switch id
(AggSwitch_ID) in {1,2,... k/2}. The size of the chromosome is equal to the total number of the
destination host, which is determined by the host number of the current network flow. The
value in chromosome gene is the id of the destination host(DstHost_ID). The destination host
is mapped to the highest level switch of the scheduling path (the core switch or the aggregation
switch). So we adopt the mapping according to Formula(5). For instance, when k is 4, the
chromosome {3,5,4,3,2} indicates the total number of hosts is 5. The flow with destination
host (ID=3) in an inter-pod is assigned to the core switch (ID=3), whereas it is assigned to the
aggregation switches (ID=1) in an intra-pod.

4.1.3 Genetic Operations
Genetic operations consist of a selection operation, a mutation operation and a crossover
operation. The selection operation is selected from the original group according to a given rule.
In this paper, it adopts the biased roulette wheel to select. According to the fitness value, it
selects the parent individual. The selection probability is shown in the Formula (5) . fi is
defined as the fitness value of an individual.

1

i
i M

i
i

fp
f

=

=

∑
 (5)

The crossover operation may produce some new chromosomes by exchanging and
recombining. As a result, it will come into being new individuals. In this paper, a single point
crossover is used to select an individual in their neighbor at random. Then, the mapping
between a destination host and a highest switch is naturally changed. In other words, the
corresponding path of a flow is automatically changed.

The mutation operation selects two chromosomes at random. Then the genes of the
chromosome are exchanged in some probability.

5252 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

4.1.4 Simulated Annealing
The metropolis criteria of SA are used to determine whether to accept a new individual or not.
Metropolis criteria are shown in the Formula (6).

()
1

, ,
exp

n

n n
n

if f f
P f f T f f if f f

KT

≥
= −   <   

 (6)

 Formula (6) represents the acceptable probability of an individual. f means the fitness value
of an old individual while fn a new individual. If fn is greater than or equal to f, the old
individual will be replaced with a new individual where the acceptable probability is 1.
Otherwise, the new individual is generally accepted in some probability.
 SAGA includes:
① Initialize control parameters (the species size, initial temperature, crossover probability

and mutation probability) .
② Encode the chromosomes according to the destination host.
③ Get the fitness value of each individual according to the initial path.
④ Carry out the genetic operation and get new species.
⑤ Select an individual according to the metropolis criteria .
⑥ Update the corresponding path and the demand.

It is depicted in Fig. 3 in detail. Assuming that the number of iteration is n and the size of
species is f , its time complexity is O(n*f).

Initialize parameters

Get the individual
corresponding path and

calculate the fitness value

T=T0

Selection,Cross
over,Mutation

Produce new
species

Replace the old
individual according to

the fitness value

T>0

Achieve global optimal
approximate solution

Update remaining
bandwidth information

Forward table information
corresponding scheduling

path

end

T=T-1 Y

N

Fig. 3. SAGA steps in detail

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5253

When the adaptive scheduling strategy filters out some flows, SAGA schedules them to
allocate available paths. In the following, we will introduce the adaptive strategy.

4.2 On-demand Traffic Adaptive Scheduling Strategy
In a multi-rooted tree topology, there are several possible equal-cost paths between any pair of
source and destination hosts. When a new large flow is detected, (e.g.10% of the host’s link
capacity),the scheduler linearly searches all possible paths to find one whose link components
can all accommodate that flow. If a path is found, then that flow is placed on that path.
Choosing some elephant flows is a prerequisite. On-demand traffic adaptive scheduling
strategy considers not only the bandwidth of network resource usage, but also the effect of the
demand. The change of the flow bandwidth demands in the current network has an effect on
the estimation bandwidth demand after adding the new flow. And according to the natural
flow bandwidth demand, the current network bandwidth resources should be dispatched
reasonably.

When the flow in the network reaches the OpenFlow switch, the data packet is forwarded
by the default ECMP, meanwhile, the controller stores the ECMP information. In addition, the
adaptive flow controlling module filters out the elephant flow set (ElephantFlows) in the
network according to the flow statistics. At the same time, it is important to choose the flow set
(ScheduleFlows) that needs to be scheduled judging from the adaptive scheduling strategy.
Because some flows satisfying their bandwidth demands can be scheduled on previous paths,
it can reduce the load of the controller. The chosen strategy algorithm is described in
Algorithm 2. If the total number of flows that need to be scheduled is F, the time complexity
will be O(F). Eventually, it may calculate a new path by using SAGA in the light of the status
of the resource usage in the current network, and update the OpenFlow switch information.
The above process is shown in Fig. 4.

Algorithm 2: the chosen strategy based on bandwidth demand changing

 1 for all flow f in Elephantflows do
 2 if f.assigned = False then
 3 ScheduleFlows ←ScheduleFlows∪{f}
 4 DstHostList ←DstHostList∪{f.dstIP}
 5 else
 6 if f.new_demand < f.old_demand
 7 for all links in f.path do
 8 FreeBW[l] ← FreeBW[l] + f.old_demand - f.new_demand
 9 else if f.new_demand > f.old_demand then
 10 IncreaseFlows ←IncreaseFlows∪{f}
 11 end if
 12 end if
 13 end for
 14 for all flow f in IncreaseFlows do
 15 if All links in f.path satisfy FreeBW > f.new_demand - f.old_demand then
 16 for all link l in f.path do
 17 FreeBW[l] ← FreeBW[l] + f.old_demand - f.new_demand
 18 else
 19 for all link l in f.path do

5254 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

 20 FreeBW[l] ← FreeBW[l] + f.old_demand
 21 ScheduleFlows ← ScheduleFlows∪{f}
 22 DstHostList ←DstHostList∪{f.dstIP}
 23 end if
 24 end for

start

Traffic monitor

Elephant flow

Yes

Bandwidth demand estimation

Choose flow based on adaptive
scheduling strategy

Path allocation based on
SAGA

update
flow information

end

No

Flow
scheduling

timer trigger

Fig. 4. On-demand adaptive traffic scheduling

 The adaptive scheduling strategy chooses the flow satisfying the demand to schedule on the
basis of the Algorithm 2. Thus, SAGA does not necessarily schedule all flows in all paths.

5. mplementation and evaluation

We have implemented our flow scheduling algorithm which is based on the POX [28]
controller and Mininet [29]. Providing a good definition of API is the purpose of POX.
Mininet should be a lightweight virtualization technology to simulate the network
environment with multiple hosts, switches and links. The goal of our test is to determine the
aggregate bisection bandwidth in various traffic patterns.
 In the Fat-Tree topology, the traffic can be divided into the three kinds by switch types. They
include:
(1) Intra-rack traffic: a host sends to a host in the same edge switch.
(2) Intra-pod traffic: a host sends to a host in the same pod.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5255

(3) Inter-pod traffic: a host sends to a host in the different pods.
 In the following, four communication models[2] are used in the experimental simulation.
(1) Stride(i): a host with x communicates with host with index(x+i) mod 16.
(2) Staggered Prob (Edge_P，Pod_P)：a host communicates with another host in the same
edge switch by Edge_P, and to its same pod by Pod_P, and to the rest of the network by
1-Edge_P-Pod_P.
(3) Random: a host sends to any other host in the network with uniform probability.
(4) Randombij: a host communicates with the other hosts in some mapping.

5.1 Analysis of bisection bandwidth
We test the bisection bandwidth with different scheduling algorithms in the different
communication models: stride, staggered, random and randombij, which are shown in Fig. 5,
6, 7, 8, respectively. Non-blocking is an ideal state without any limits. In the stride
communication pattern, we choose stride(1),stride(2), stride(4) and stride(8). Three traffic
types are distributed as Table 1. with the increase of the parameter i, the average bandwidth
gradually decreases. The reason is that the inter-pod flow rate of the communication pattern
will increase. The adding inter-pod flow will lead to the extra link load of the core layer and
the congestion of some links. In each stride, SAGA is almost equal to SA except for stride(2).
In stride(2), SAGA performs better than SA with about 5.86 Mb/s. Because the traffic has two
kinds of intra-pod and inter-pod in that communication patter. SAGA considers just the two
kinds patters. SAGA is better than GFF with 20 Mb/s and outperforms ECMP with 30 Mb/s in
all stride case. Because SAGA can schedule flows to different core and aggregation switches,
which reduces the load in the network.

Table 1. Rate of three traffic types
Stride(i) Intra-rack Intra-pod Inter-pod
Stride(1) 50% 25% 25%
Stride(2) 0% 50% 50%
Stride(4) 0% 0% 100%
Stride(8) 0% 0% 100%

Fig. 5. Average bisection bandwidth in Stride(i)

5256 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

In the staggered communication pattern, we test in staggered(0.2,0.3) , staggered(0.2,0.5) and
staggered(0.5,0.3). Each pattern has three groups. The bisection bandwidth of SAGA is about
145 Mb/s in all communication patters. As a whole, SAGA outperforms ECMP, GFF and SA.
Especially, SA is 12.3% lower than SAGA in stag2(0.2,0.3) . Because 50% inter-pod traffic
and 30% intra-pod traffic exist in this patter. SA only considers the different pod instead of the
same pod, nevertheless SAGA considers the two kinds of flow scheduling. GFF is 30% lower
than SAGA in stag0(0.2,0.3). Due to the dynamic scheduling mechanism, SAGA can schedule
the flow according to the dynamic demand. The bisection bandwidth in stag(0.2,0.3) is lower
than stag(0.5,0.3) for all algorithms, because the traffic passing a core switch is added in
stag(0.2,0.3) , which causes more load in the core switch with a low link utilization. However,
no matter what, SAGA outperforms other algorithms.

Fig. 6. Average bisection bandwidth in StaggeredProb

In random communication pattern, we run experiment for three groups. In the best case,
SAGA outperforms SA with 8.12 Mb/s. Since the host within the pod randomly sends traffic
to the destination host, the random mapping method of between the destination host and the
top switch in SAGA has greater advantages over searching current scheduling path of the
approximate optimal solution. The average bisection bandwidth is about 20 Mb/s higher than
others in the case.

Fig. 7. Average bisection bandwidth in Random

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5257

In randombij, we run experiment for three groups. Since the mapping between the host the
highest switch, which contributes to adding the scale of searching spaces, SAGA is about
15.23 Mb/s lower than SA at the worst case. Given the dynamic scheduling mechanism,
SAGA still outperforms GFF and ECMP.

Fig. 8. Average bisection bandwidth in Randombij

In order to verify the scalability of the algorithm, we compare SAGA with Ashman-BestFit.
Ashman-ProFit. Ashman-BestFit and Ashman-ProFi are proposed to reduce the fragment. It is
described in Fig. 9, 10, 11, 12. In stride, SAGA is higher than Ashman-BestFit with 15.76
Mb/s and Ashman-ProFi with 7.68 Mb/s. However, SAGA is slightly lower than
Ashman-ProFi in stride(4) and Ashman-BestFit in stride(8). Because there is only inter-pod
traffic in stride(4) and stride(8). The mapping of SAGA may add the range of searching the
best path. And in randombij, SAGA is lower than Ashman-BestFit with 4.13 Mb/s. In
staggered and random, the average bisection bandwidth of SAGA is higher than
Ashman-BestFit and Ashman-ProFit.

Fig. 9. Average bisection bandwidth in Stride(i)

5258 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

Fig. 10. Average bisection bandwidth in StaggeredProb

Fig. 11. Average bisection bandwidth in Random

Fig. 12. Average bisection bandwidth in Randombij

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5259

5.2 Analysis of convergence time
In order to explore the convergence time in SAGA, we tested it in above communication
patters. We show in Table 2 the average convergence time. In Staggered and random
communication mode, the average convergence time of SA is less than SAGA. Because
SAGA takes into account the traffic scheduling between the same pod, the range of searching
increases. In the above two modes, the bisection bandwidth obtained by SAGA is higher than
SA, thus verifying that SAG increases the search time to achieve high bandwidth. However, in
Stride4 and Stride8 communication modes, the average convergence time of SA is greater than
SAGA. On the one hand, because the traffic between the scheduling only involves traffic
scheduling between two different pods, SAGA reduces the search scope. On the other hand,
SAGA selects some urgent scheduled flows according to the adaptive scheduling mechanism,
so the number of flow needed to be scheduling may be less than SA. In the randombij model,
the average convergence time of SA is greater than SAGA. Since the traffic in this mode is
mapped by one to one, the mapping between the host and the core switches used by SA can
obtain the optimal solution. Due to the small range of search in SAGA , so it may not get the
best solution and verify that the SA two bandwidth higher than SAGA at the same time.

 Table 2. Average convergence time (s)

Communication
Patterns

SA SAGA

Stag_0_2_3 0.4573 0.8914
Stag_1_2_3 0.4321 0.7833
Stag_2_2_3 0.4993 0.7220
Stag_0_5_3 0.2740 0.6653
Stag_1_5_3 0.3200 0.7380
Stag_2_5_3 0.3386 0.7533

Stride1 0.2440 0.6113
Stride2 0.4160 0.7653
Stride4 1.1526 0.7160
Stride8 0.8513 0.7913

Random0 0.6626 0.6840
Random1 0.5426 0.5873
Random2 0.5493 0.7693

Random0_bij 0.5426 0.5300
Random1_bij 0.7486 0.7340
Random2_bij 0.6613 0.6413

5.3 Scalability
To evaluate the scalability of our scheduling algorithm, we tested the algorithm in k=6. The
parameter is set as Table 3. Because of the difference of the two kinds of topological total
bisection bandwidth, the average bisection bandwidth rate of many algorithms was compared
and analyzed, as shown in Fig. 13. We can see from the figure, with the increase of the
network size, the average bandwidth of each traffic scheduling algorithm is decreased.

5260 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

Because the scale is bigger, the searching space is wider. In summary, the result show that the
SAGA based on adaptive demand scheduling strategy has an advantage over other existing
scheduling approaches for data centers.

 Table 3. The total bisection bandwidth in different network scale
Scale Core switch Aggregation

switch
Edge switch Host Total bisection

bandwidth
k=4 4 8 8 16 160Mbps
k=6 9 18 18 54 270Mbps

Fig. 13. Average bisection bandwidth in random

6. Conclusion

Since the problem of low link bandwidth utilization in data center network is gradually
addressed in more hot fields, and previous approaches fail to schedule according to their
demands in real time, this paper presents the SAGA strategy based on the adaptive traffic
scheduling mechanism through software defined network technology. Due to the good
features in fat-tree with the high degree of available path diversity, SAGA based on adaptive
traffic scheduling mechanism considers not only the communication in the different pods, but
also the communication in the same pod. In addition, recovering resources is included in our
module. Experimental results show that SAGA based on traffic adaptive scheduling
mechanism achieves higher bisection bandwidth than those of ECMP, GFF, SA,
Ashman-BestFit and Ashman-ProFit. We believe that our scheduling mechanism can better
facilitate bandwidth resources in links and improve network utilization. However, the
threshold for filtering out flows is set by hand. And our way shows the shortage in randombij.
In the future, we will focus on getting the threshold dynamically and narrowing the searching
space.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5261

References
[1] D Li，GH Chen，FY Ren，CL Jiang，MW Xu, “Data Center Network Research progress and

trend,” Chinese Journal of Computer, vol. 37, no. 2, pp.259-274 , 2014.
Article (CrossRef Link)

[2] Al-Fares M, Radhakrishnan S, Raghavan B, “Hedera: Dynamic Flow Scheduling for Data Center
Networks,” in Proc. of 7th USENIX conference on Network Systems Design and Implementation
(NSDI) , pp. 19-19, April 28 – 30, 2010.

[3] Yuchen Liu, “Research on bandwidth fragment in network load balancing of data centers,”
shanghai: Shanghai Jiao Tong University, 2014.

[4] Benson T, Anand A, Akella, “MicroTE: Fine Grained Traffic Engineering for Data Centers,” in
Proc. of 7th conference on emerging Networking Experiments and Technologies, December 06 –
09, 2010. Article (CrossRef Link)

[5] Wang W, Sun Y, Zheng K, “Freeway: Adaptively Isolating the Elephant and Mice Flows on
Different Transmission Paths,” in Proc. of 22th International Conference on Network Protocols,
pp. 362-367, October 21-24, 2014. Article (CrossRef Link)

[6] M Rifai, D Lopez-Pacheco, G Urvoy-Keller, “Coarse-grained Scheduling with Software-Defined
Networking Switches,” in Proc. of ACM Conference on Special Interest Group on Data
Communication, pp. 95-96, August 17 -21,2015. Article (CrossRef Link)

[7] Greenberg A, Hamilton JR, Jain N , “VL2: A scalable and flexible data center network,” in Proc.
of the ACM SIGCOMM 2009 conference on Data communication, pp. 51-62, August 16-21, 2009.
Article (CrossRef Link)

[8] Wu X, Yang X , “DARD: Distributed Adaptive Routing for Datacenter Networks,” in Proc. of
33th IEEE Conf. on Distributed Computing Systems, pp. 32-41, June 18-21,2012.
Article (CrossRef Link)

[9] Cui W, Qian C, “DiFS: distributed flow scheduling for adaptive routing in hierarchical data center
networks,” in Proc. of 10th ACM/IEEE symposium on Architectures for networking and
communications systems (ANCS), pp. 53-64, October 21-22, 2014. Article (CrossRef Link)

[10] Zuo Q Y, Chen M, Zhao G S, “Research on SDN technology based on OpenFlow Technologies,”
Journal of software, vol. 24, no. 5, pp. 1078-1097, 2013. Article (CrossRef Link)

[11] Kreutz D, Ramos FMV, Rothenberg C, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 10-13, 2014. Article (CrossRef Link)

[12] Nunes BA. A, Mendonca M, Nguyen XN, “A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks,” IEEE Communications Surveys & Tutorials, vol.
16, no. 3, pp. 1617-1634, 2014. Article (CrossRef Link)

[13] OpenFlow Consortium. OpenFlow website[EB/OL]. [Online]. Available: http://archive.
OpenFlow. org/．

[14] Erickson D, “The beacon openflow controller,” in Proc. of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, pp. 13-18, August 16-16, 2013.
Article (CrossRef Link)

[15] Mckeown N, Anderson T, Balakrishnan H, “OpenFlow: enabling innovation in campus
networks, ” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.
Article (CrossRef Link)

[16] Florin Pop, Ciprian Dobre, Dragos Comaneci , Joanna Kolodziej, “Adaptive scheduling algorithm
for media-optimized traffic management in software defined networks,” Computing, vol. 98, pp.
147–168, 2016. Article (CrossRef Link)

[17] Al-Fares M, Loukissas A, Vahdat A , “A scalable commodity data center network architecture,” in
Proc. of the ACM SIGCOMM 2008 conference on Data communication, pp. 63-74, August 17-22,
2008. Article (CrossRef Link)

[18] Heller B, Seetharaman S, Mahadevan P, “ElasticTree: Saving energy in data center networks,” in
Proc. of 7th USENIX conference on Networked Systems Design and Implementation (NSDI), pp.
17-17, April 28-30, 2010. Article (CrossRef Link)

http://xueshu.baidu.com/s?wd=author%3A%28D.%20Li%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28G.-H.%20Chen%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28F.-Y.%20Ren%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28C.-L.%20Jiang%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28M.-W.%20Xu%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://www.researchgate.net/publication/288660535_Data_center_network_research_progress_and_trends
http://xueshu.baidu.com/s?wd=paperuri%3A%2848dfb2aceed4687d7c1f7e7d83119647%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2079304&ie=utf-8&sc_us=8214566001963629482
http://xueshu.baidu.com/s?wd=paperuri%3A%28a05c1132ac05574ee2768c0efab5df11%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6980398&ie=utf-8&sc_us=6612496622266051581
http://xueshu.baidu.com/s?wd=author:(Rifai,%20Myriana)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Lopez-Pacheco,%20Dino)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Urvoy-Keller,%20Guillaume)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=paperuri%3A%28af8492861f7212192fb23e6f5ba674c7%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2790004&ie=utf-8&sc_us=18133192475618072613
http://xueshu.baidu.com/s?wd=paperuri%3A%28ddd822d8da199f199416b27f2b8fda4f%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1897877&ie=utf-8&sc_us=1647414757135161964
http://xueshu.baidu.com/s?wd=paperuri%3A%28d06afc4e251e2e40b2f3a19d4707bb75%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2356243&ie=utf-8&sc_us=494754800060488803
http://www.sciencedirect.com/science/article/pii/S1389128616301839
https://doi.org/10.3724/sp.j.1001.2013.04390
https://doi.org/10.1002/sec.1737
https://doi.org/10.1109/surv.2014.012214.00180
https://doi.org/10.1145/2491185.2491189
http://xueshu.baidu.com/s?wd=paperuri%3A%28c24d57ead34adaea22fd6fe925bdc243%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1355746&ie=utf-8&sc_us=2020959928658387310
http://xueshu.baidu.com/s?wd=paperuri%3A%289746dad4118df042b98fbbd7376229fd%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2875901&ie=utf-8&sc_us=16579155822604929817
http://dl.acm.org/citation.cfm?id=1402946.1402967
http://xueshu.baidu.com/s?wd=paperuri%3A%2854e27be0082c8962a6935ae4b4047576%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1855728&ie=utf-8&sc_us=9734663129833081431

5262 Su and Tsai: New Proxy Blind Signcryption Scheme for Secure Multiple Digital
Messages Transmission Based on Elliptic Curve Cryptography

[19] Mysore RN, Pamboris A, Farrington N, “PortLand: A scalable fault-tolerant layer 2 data center
network fabric,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 4 , pp. 39-50,
2009. Article (CrossRef Link)

[20] Singla A, Hong CY, Popa L, “Jellyfish: Networking Data Centers Randomly,” In Proc. of 9th
USENIX conference on Networked Systems Design and Implementation, pp. 17-17, April 25-27,
2011.

[21] Farrington N, Porter G, Radhakrishnan S , “Helios: A hybrid electrical/optical switch architecture
for modular data centers,” in Proc. of the ACM SIGCOMM 2010 conference, pp. 339-350, August
30- September 03 , 2010. Article (CrossRef Link)

[22] Wang G, Andersen DG, Kaminsky M , “c-Through: Part-time optics in data centers,” in Proc. of
the ACM SIGCOMM 2010 conference, pp. 327- 338, August 30 - September 03, 2010.
Article (CrossRef Link)

[23] Chen K, Singlay A, Singhz A, “OSA: An optical switching architecture for data center networks
with unprecedented flexibility,” IEEE/ACM Transactions on Networking, vo1.22, no. 2, pp.
498-511, 2014. Article (CrossRef Link)

[24] Guo C, Wu H, Tan K, “Dcell: A scalable and fault-tolerant network structure for data centers,”
Acm Sigcomm Computer Communication Review, vol. 38, no. 4, pp. 75-86, 2008.
Article (CrossRef Link)

[25] Guo C, Lu G, Li D, “BCube: A high performance, server-centric network architecture for modular
data centers,” Acm Sigcomm Computer Communication Review, vol. 39, no. 4, pp. 63-74, 2009.
Article (CrossRef Link)

[26] Li D, Guo C, Wu H , “FiConn: Using backup port for server interconnection in data centers,” in
Proc. of INFOCOM , pp. 2276-2285, April 19-25, 2009. Article (CrossRef Link)

[27] Wu H, Lu G, Li D, “MDCube: A high performance network structure for modular data center
interconnection,” in Proc. of 5th international Conference on emerging Networking Experiments
and Technologies (CoNEXT), pp. 25-36, December 01- 04, 2009. Article (CrossRef Link)

[28] Huang L, Jia Q, Wang X , “PCube: Improving power efficiency in data center networks,” in Proc.
of the 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 65-72, July 04 -09,
2011. Article (CrossRef Link)

[29] POX: https://openflow.stanford.edu/display/ONL/POX+Wiki.
[30] Mininet: https://mininet.org.

http://xueshu.baidu.com/s?wd=paperuri%3A%2813fae4562d4f95b8fdc9b41210cf309e%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1592575&ie=utf-8&sc_us=15692836216839107963
http://xueshu.baidu.com/s?wd=paperuri%3A%283262748f766edd654470eb824d8573ed%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1851223&ie=utf-8&sc_us=5187027439052384287
http://xueshu.baidu.com/s?wd=paperuri%3A%28775a2a1257a2ca970dc8e21a86544bd8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D1851222&ie=utf-8&sc_us=8241823163262284121
https://doi.org/10.1109/tnet.2013.2253120
https://doi.org/10.1145/1402958.1402968
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1109/infcom.2009.5062153
https://doi.org/10.1145/1658939.1658943
https://doi.org/10.1109/cloud.2011.74
https://openflow.stanford.edu/display/ONL/POX+Wiki.
https://mininet.org/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 11, November 2017 5263

Wentao Wang
He received M.S. degrees in Computer Application Technology from South Central
University for Nationalities, Wuhan, China, in 2001, and received the Ph.D. degree in
Control science and Engineering from Huazhong University of Science and
Technology in 2010. Also, from 2002 to 2003, he worked as a visiting scholar at
department of Computer Engineering, Chonbuk National University, South Korea.
His current research interests include mobile and sensor networks, image processing,
and computational intelligence.

Lingxia Wang

She received bachelor degree in information engineering from Hubei University of
Chinese Medicine in 2015 and now studying for her master Degree of computer
application technology in South-Central University for Nationalities. Her research
interesting includes computer networks.

Fang Zheng
She received bachelor degree in electronic and information engineering from
Huazhong University of Science and Technology Wuchang Branch in 2012 and master
Degree in computer application technology from South-Central University for
Nationalities in 2016. Her research interesting includes computer networks.

