• Title/Summary/Keyword: adaptive PID

Search Result 203, Processing Time 0.027 seconds

Backstepping Sliding Mode-based Model-free Control of Electro-hydraulic Systems

  • Truong, Hoai-Vu-Anh;Trinh, Hoai-An;Ahn, Kyoung-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.

Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives (센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Han, Hoo-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

Autotuning fuzzy PID controller for position control of DC servo motor

  • Park, Jong-Kun;Lim, Young-Cheol;Cho, Kyeng-Young;Ryoo, Young-Jae;Oh, Dong-Hwan;Wi, Seog-O;Lee, Hong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.257-262
    • /
    • 1994
  • This paper describes an autotuning fuzzy PID controller for a position control of DC serve motor. Because ZNM(Ziegler-Nichols Method) with relay feedback has the difficulty in re-tuning the PID parameters and adaptive method has complex algorithm, a new method to overcome those problems is required. The proposed scheme determines the initial PID gains by using ZNM with relay feedback, and then re-tunes the optimal PID parameters by using fuzzy expert system whenever control conditions are changed. To show the validity of the proposed method, a position control of DC servo motor is illustrated by computer simulation and is experimented by a designed controller.

  • PDF

Design of Model Following PID Controller Using Fuzzy Tuner (퍼지 동조기법을 이용한 기준모델 추종 PID제어기의 설계)

  • Hong, Hyug-Gi;Moon, Dong-Wook;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.621-623
    • /
    • 1999
  • In this paper, Model following PID control system, which is combined PID controller with Model Reference Adaptive Controller, is proposed. To decrease complex and much calculation which is produced in tuning process, the tuning method of parameter with fuzzy algorithm is introduced. Fuzzy algorithm isn't used in the form of controller generally much used, but tuner. Experimental results show that proposed controller has the PID parameter be tuned by fuzzy algorithm. Therefore, We expect model following PID to be operated in the real-time control.

  • PDF

A Design of Steering Controller for AGV using Immune Algorithm (면역 알고리즘을 이용한 AGV의 조향 제어기 설계에 관한 연구)

  • Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2824-2826
    • /
    • 2002
  • Immune system is an evolutionary biological system to protect innumerable foreign materials such as virus, germ cell, and etcetera. Immune algorithm is the modeling of this systems response that has adaptation and reliability when disturbance occur. In this paper, immune algorithm is proposed to control four wheels steering AGV(Automated Guided Vehicle) in container yard. The adaptive immune system is applied to the PID controller. For design the PID controller using immune algorithm, we tune PID parameters by off-line manner, in order to avoid the damage from abrupt control force. Repeatedly, the PID parameters are adjusted to be accurate by on-line fine tuner of immune algorithm. And then the computer simulation result from the viewpoint of yaw rate and lateral displacement are analyzed and compared with result of conventional PID controller.

  • PDF

A Study on the Design of Feedback Adaptive Controller

  • Shin, Wee-Jae;Lee, Sang-Yun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.185-188
    • /
    • 1998
  • In this paper, we propose a feedback adaptive controller which need not adjustment of the scale factor. Numerical examples are included to illustrate the procedure of a adaptive control and to show the performance of the control system. We can observe that the output of control system, converges toward the reference of response.

  • PDF

Attitude control of a hydrofoil type catamaran using decentralized adaptive control technique (비집중 적응제어기법을 이용한 복합지지 초고선의 자세제어)

  • Kim, Byung-Yeon;Lee, Gyung-Joong;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1233-1236
    • /
    • 1996
  • Attitude Control System for a Hydrofoil type catamaran in wave is designed using a Decentralized Adaptive Control technique which is announced already by authors. This automatic attitude control system is designed for its good seaworthiness and for robustness on the variation of center of gravity. The performance is compared with a PID controller and the results show that the Decentralized Adaptive controller has better stability on the variation of the center of gravity.

  • PDF

Variable PID Gain Control of Winder Tension of Roll-to-Roll Printing System using Estimation of Winder-Roll Radius (롤투롤 시스템의 와인더 반경 추정을 이용한 와인더 장력의 가변 PID이득 제어)

  • Park, Jong-Chan;Jeon, Sung Woong;Nam, Ki Sang;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-760
    • /
    • 2013
  • The dynamics of the winder roller of a roll-to-roll printing system for printed electronics is a time-varying system because of the variation of the winder roller radius owing to rewinding or unwinding of the web. Therefore, an adaptive control method considering the time-variant characteristics is required for precise tension control. In this study, the variable PID gain method is applied to the actual roll-to-roll system and verified by experiments for unwinder tension control. The required value of the winder roller radius for the application of the variable PID gain is estimated from the measurement of the winder tension and winder motor torque. The simulation results as well as experimental results show that the fixed PID gain control cannot stabilize the tension of the winder roller with varying winder roller radius. On the other hand, the variable PID gain method can control the tension of the winder roller regardless of the winder roller radius.

Research of Fuzzy Auto gain tuning control to apply actuator controller of Unmaned Aerial Vehicle (무인항공기 작동기 컨트롤러를 위한 퍼지 자동 이득 조정 PID 제어 연구)

  • Kim, Tae-Wan;Baek, Jin-Wook;Lee, Hyeong-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.813-819
    • /
    • 2009
  • Designing actuator controllers of aircraft, which control aileron, flap, elevator and so on, is quiet difficult, because they have time variant nonlinear mechanical structures and also have many kinds of disturbances which are not been able to model easily. This paper reports about the performance of Fuzzy Auto gain tuning Control algorithm applied unmaned aerial vehicle. Fuzzy Auto gain tuning PID control uses PID control and Fuzzy control, therefore It can be applied very easily and it also has advances of PID control. It can control a unmaned aerial vehicle actuators adaptively even though the designer does not have enough information of plant.

  • PDF

Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller

  • Muthalif, Asan G.A.;Kasemi, Hasanul B.;Nordin, N.H. Diyana;Rashid, M.M.;Razali, M. Khusyaie M.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • The aim of this research is to develop a new method to use magnetorheological (MR) damper for vibration control. It is a new way to achieve the MR damper response without the need to have detailed constant parameters estimations. The methodology adopted in designing the control structure in this work is based on the experimental results. In order to investigate and understand the behaviour of an MR damper, an experiment is first conducted. Force-displacement and force-velocity responses with varying current have been established to model the MR damper. The force for upward and downward motions of the damper piston is found to be increasing with current and velocity. In cyclic motion, which is the combination of upward and downward motions of the piston, the force with hysteresis behaviour is seen to be increasing with current. In addition, the energy dissipated is also found to be linear with current. A proportional-integral-derivative (PID) controller, based on the established characteristics for a quarter car suspension model, has been adapted in this study. A fuzzy rule based PID controller (F-PID) is opted to achieve better response for a varying frequency input. The outcome of this study can be used in the modelling of MR damper and applied to control engineering. Moreover, the identified behaviour can help in further development of the MR damper technology.