• Title/Summary/Keyword: adapted equation

Search Result 137, Processing Time 0.028 seconds

A STUDY ON RELATIVE EFFICIENCY OF KERNEL TYPE ESTIMATORS OF SMOOTH DISTRIBUTION FUNCTIONS

  • Jee, Eun-Sook
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 1994
  • Let P be a probability measure on the real line with Lebesque-density f. The usual estimator of the distribution function (≡df) of P for the sample $\chi$$_1$,…, $\chi$$\_$n/ is the empirical df: F$\_$n/(t)=(equation omitted). But this estimator does not take into account the smoothness of F, that is, the existence of a density f. Therefore, one should expect that an estimator which is better adapted to this situation beats the empirical df with respect to a reasonable measure of performance.(omitted)

  • PDF

Power Control of Wind Induction Generator used SVPWM Inverter (SVPWM 인버터를 이용한 풍력발전용 유도발전기 최적전력제어)

  • Choi, Sun-Pill;Kim, Dong-Wan;Kim, Choon-Sam;Lee, Hyun-Woo;Park, Han-Suk;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1303-1305
    • /
    • 2002
  • In this study, We proposed high efficiency wind power generator system for induction generator used SVPWM swiching inverter. First, We suggest Equivalient Circuit for Ind Generator, it's characteristics equation, and equation of slip. In addition, we suggest Pick Traction Slip control methods. adapted variable power system. We study simulation result fo suggested system and output power by slip e and we identify SVPWM of suitable wind p system by comparison between SPWM and SVPW Consequently, we show that the control result variable wind power is suitable.

  • PDF

Numerical Simulation and Analysis for Optimum Design of a Thermoacoustic Refrigerator (공명관식 열음향 냉동기의 최적설계를 위한 수치모사 및 설계인자 분석)

  • Kim, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.329-340
    • /
    • 1995
  • Basic refrigeration effect and efficiency of a thermoacoustic refrigerator is studied. The refrigerator model for numerical simulation is composed of half wavelength resonator and appropriate stack of plate. Theoretical model for thermoacoustic refrigeration suggested by Swift et. al is adapted for numerical calculation. The model contains arbitrary viscosity effect of the gas filled in the resonator. The wave equation is integrated by using 4-th order Runge-Kutta algorithm to give pressure distribution along the stack of plate. Heat flux and COP are also calculated based on the energy flux equation. By analyzing the numerical simulation results, optimum values of design parameters for thermoacoustic refrigerator are obtained.

  • PDF

A BAYESIAN ANALYSIS FOR PRODUCT OF POWERS OF POISSON RATES

  • KIM HEA-JUNG
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • A Bayesian analysis for the product of different powers of k independent Poisson rates, written ${\theta}$, is developed. This is done by considering a prior for ${\theta}$ that satisfies the differential equation due to Tibshirani and induces a proper posterior distribution. The Gibbs sampling procedure utilizing the rejection method is suggested for the posterior inference of ${\theta}$. The procedure is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries. A salient feature of the procedure is that it provides a unified method for inferencing ${\theta}$ with any type of powers, and hence it solves all the existing problems (in inferencing ${\theta}$) simultaneously in a completely satisfactory way, at least within the Bayesian framework. In two examples, practical applications of the procedure is described.

Design Of Air-Distribution System in a Duct (취출구를 가진 덕트의 공기분배장치 설계)

  • Kang, Hyung-Seon;Cho, Byung-Ki;Koh, Young-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.954-960
    • /
    • 2007
  • The purpose of this paper is to obtain design method of air-distribution system. Air-distribution system is composed of blower, duct, diffusers and measuring equipment. The air-flow rate from each diffuser is not equal. The air-flow rate is calculated with the combined equations which are Bernoulli's equation, continuity equation and minor loss equations. Inlet condition and outlet condition are adapted in each duct system. Then square difference between function of maximum air-flow rate and minimum air-flow rate is used as an object function. Area of diffuser and velocity are established as constraints. To minimize the object function, the optimization method is used. After optimization the design variables are selected under satisfaction of constraints. The air-distribution system is calculated again with the result of optimized design variable. It is shown that the air-distribution system has the equal air-flow rate from diffusers.

Optimal Power Control of Wind Induction Generator System (풍력발전용 유도발전기 시스템의 최적제어)

  • Choi SunPill;Heo TaeWon;Park JeeHo;Noh TaeGyun;Jung JaeRoun;Woo JungIn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.69-72
    • /
    • 2002
  • In this study, We proposed high efficiency wind power generator system for induction generator used SVPWM swiching inverter. First, We propose Equivalient Circuit for Induction Generator, it's characteristics equation, and power equation of slip. In addition, we suggest Pick Power Traction Slip control methods, adapted variable wind power system. We study simulation result for the proposed system and output power by slip effect. and we identify SVPWM of suitable wind power system by comparison between SPWM and SVPWM Consequently, we show that the system control result from variable wind power is suitable.

  • PDF

Optimal Slip Control of Wind Induction Generator (풍력전용 유도 발전기 최적 슬립제어)

  • Choi, Sun-Pill;Park, Jee-Ho;Noh, Tae-Gyun;Kim, Dong-Wan;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.317-319
    • /
    • 2002
  • In this study, We proposed high efficiency wind power generator system for induction generator used SVPWM swiching inverter. First, We propose Equivalient Circuit for Induction Generator, it's characteristics equation, and power equation of slip. In addition, we suggest Pick Power fraction Slip control methods, adapted variable wind power system. We study simulation result for the proposed system and output power by slip effect. and we identify SVPWM of suitable wind power system by comparison between SPWM and SVPWM. Consequently, we show that the system control result from variable wind power is suitable.

  • PDF

The hovering Flight Attitude Control of a Helicopter using Mixed $H_2/H_{\infty}$ Control Techniques ($H_2/H_{\infty}$ 혼합 제어 기법을 이용한 헬리콥터의 정지 비행 자세 제어에 관한 연구)

  • Lee, Myung-Wook;Ko, Kang-Woong;Min, Deuk-Gi;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2599-2601
    • /
    • 2000
  • A helicopter control problem has been researched with many control theory. Especially, study of the hovering flight attitude control of a helicopter has been brisked since 60s with multivariable control theory. In this paper, the modeling is interpreted through the 6-freedom equation. To getting a entire equation, species of parameters and charts are adapted. The $H_2/H_{\infty}$ controller is acquired by mixing the $H_2$ control theory and the $H_{\infty}$ control theory. The $H_2$ control theory is reasonable one to increase the performance of a plant, and the $H_{\infty}$ control theory secures the robust stability. The simulation shows that the helicopter system is being controlled while maintaining performance and robust stability against perturbation.

  • PDF

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Numerical Study on the Particle Movement of a Particle-Laden Impinging Jet (고체 입자가 부상된 충돌제트에서의 입자 거동에 관한 수치해석적 연구)

  • Lee, Jae-Beom;Seo, Yeong-Seop;Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1802-1812
    • /
    • 2001
  • The purpose of this study is to analyze numerically the movement of particles included in turbulent fluid flow characteristics of metallic surfaces. To describe fluid flew, the incompressible Navier-Stokes equation discretized by the finite volume method were solved on the non-orthogonal coordinates with non-staggered variable arrangement, and the k-$\xi$ turbulence model was adapted. After fluid flow was calculated, particle movement was predicted from the Lagrangian approaches. Non-essential complexities were avoided by assuming that the particles had spherical shapes and the Stoke's drag formula only consisted of external farces acting upon them. In order to validate the numerical calculations, the results were compared with the experimental data reported in literature and agreed well with them. The drag force coefficient equation showed better agreement with the experimental data in the prediction of particle movement than the correction factor equation. Impact velocity and impact angle increased as inlet turbulence intensity decreased, relative jet height was lower. or the Reynolds number was larger.