• Title/Summary/Keyword: active noise control

Search Result 857, Processing Time 0.028 seconds

Development of the Helicopter Noise Prediction Code and its Applications (헬리콥터 소음 예측 코드 개발 및 적용사례)

  • Wie, Seong-Yong;Kim, Do-Hyung;Kang, Hee Jung;Chung, Ki-Hoon;Hwang, Changjeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.904-910
    • /
    • 2014
  • The Helicopter noise analysis code was developed using Farassat's Formular 1A based on Ffowcs-Williams and Hawkings equation and Lowson's Formula which contains single loading noise source concept. HART-II(Higher harmonic control Aeroacoustic Rotor Test), STAR(Smart-Twisting Active Rotor) and Active-tab Rotor were computed and analyzed by using developed noise code. The results of these rotor noise prediction are explained and its applicability would be mentioned in this paper.

  • PDF

Convergence of the Filtered-x Least Mean Fourth Algorithm for Active Noise Control (능동 소음 제어를 위한 Filtered-x 최소 평균 네제곱 알고리듬의 수렴분석)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.616-625
    • /
    • 2002
  • In this paper, we drove the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyzed its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. The application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

Detailed Design of an Active Rotor Blade for Reducing Helicopter Vibratory Loads

  • Natarajan, Balakumaran;Eun, Won-Jong;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.236-241
    • /
    • 2011
  • An active trailing-edge flap blade named as Seoul National University Flap (SNUF) blade is designed for reducing helicopter vibratory loads and the relevant aeroacoustic noise. Unlike the conventional rotor control, which is restricted to 1/rev frequency, an active control device like the present trailing-edge flap is capable of actuating each individual blade at higher harmonic frequencies i.e., higher harmonic control (HHC) of rotor. The proposed blade is a small scale blade and rotates at higher RPM. The flap actuation components are located inside the blade and additional structures are included for reinforcement. Initially, the blade cross-section design is determined. The aerodynamic loads are predicted using a comprehensive rotorcraft analysis code. The structural integrity of the active blade is verified using a stress-strain recovery analysis.

  • PDF

Effective Fan Noise Control Using Active Noise Control (능동소음제어를 이용한 효과적인 팬소음의 제어)

  • Eom Seung-Sin;Shin Inwhan;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.433-438
    • /
    • 1999
  • This paper describes Active Noise Cancellation/Control(ANC) method that removes the information of the unnecessary noise and doesn't remove the informations of the necessary noise(warning sound, operating sound etc.) for the induced noise of the mechanical system. In this paper, the noise source Is axial fan, and the Feedback Active Noise control method that can effectively control BPF generated from the axial fan is used, and the Filtered-X LMS algorithm for adaptive algorithms is used. The experiments are executed for two case(propagating noise in the duct, emission noise for exterior free field). The part to be removed is BPF noise, and the band-pass filter not to effect to the other frequencies is used. Also, to investigate the effect of the noise reduction for human, we are compared with the results that are controlled for using Loudness before and after. As a results, we are certified that the BPF is decreased only and frequencies outside of BPF are not affected, and we acquire the reduction effects of 6.7 dB Loudness Level, then the frequency to be removed is controlled. Therefore, we can be certified that sound pressure as well as loudness can be effectively decreased for human sound quality

  • PDF

TWO TYPES OF ACTIVE NOISE CONTROL SYSTEM USING MFB LOUDSPEAKER

  • Nishimura, Yoshitaka;Shimada, Yasuyuki;Usagawa, Tsuyoshi;Ebata, Masanao
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.764-769
    • /
    • 1994
  • The impedance of an electro-acoustic transducer can be controlled by motional feedback, and the noise in a duct can be reduced actively by adjusting the impedance using an additional sound. In this paper, two approaches for active noise control using motional feedback (MFB) loudspeaker are described. First configuration uses an external sensor to pickup of source directly. In this configuration, the adaptation of controller is necessary to compensate the change of transfer function from noise source to control poing. The second configuration uses a new adaptive algorithm specialized for peridic noise. Because this configuration does not require any reference input and the error sensor couples very tightly with control loudspeaker, this MFB system itself is independent of the duct condition. No microphone are required in both configurations, so that a more reliable and stable active control system can be realized under severe conditions such as high pressure, high temperature, dust, flow and so on.

  • PDF

Stabilized Adaptive Fuzzy LMS Algorithms for Active Noise Control (능동소음제어를 위한 안정화된 퍼지 LMS 알고리즘)

  • Ahn, Dong-Jun;Baek, Kwang-Hyun;Nam, Hyun-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.150-155
    • /
    • 2011
  • In an active noise control systems, an IIR filter may cause a problem in stability beacause of its poles. For IIR filter, its poles goes sometimes out of a unit circle in a z-plane in the transition state, where the adaptive algorithm converges to the optimum value, which causes the system to diverge. Fuzzy LMS algorithm has a better convergence property than conventional LMS algorithms, but is not applicable to IIR filter because of the reasons. Stabilized adaptive algorithm could be improves stability by moving the pole of IIR filer toward the origin forcibly in the transient state, and by introducing forgetting factor to maintain the optimum convergence when it reaches to the steady state. In this paper, We proposed stabilized adaptive fuzzy LMS algorithms with IIR filter structures, for single channel active noise control with ill conditioned signal case. Computer simulations were performed to show the effectiveness of a proposed algorithm.

Stable Active Noise Control Using Auto-Secondary Path Estimation Techniques (자동 2차경로 추정기법을 이용한 안정한 능동소음제어)

  • Nam, Hyun-Do;Seo, Sung-Dae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2299-2301
    • /
    • 2009
  • The adaptive IIR filters for active noise control systems are more effective when acoustic feedback exists, but the adaptive IIR filters could be unstable when the filter algorithm is not yet converged. In this paper, auto-secondary path estimation techniques and a stabilizing process for adaptive Multi-Channel Recursive LMS (MCRLMS) filters are developed to improve the stability of multi-channel active noise control systems. Experiments using a TMS320VC33 digital signal processor in a three dimensional enclosure have performed to show the effectiveness of the proposed algorithm.

Active noise control with on-line adaptive algorithm in a duct system (덕트에서 온라인 적응 알고리듬을 이용한 능동소음제어)

  • Kim, Heung-Seob;Hong, Jin-Seok;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1332-1338
    • /
    • 1997
  • In the case of the transfer function for the secondary path is dependent on time, the on-line method which can model it is continuously must be applied to the active noise control technique. And the adaptive random noise technique among the on-line methods is effective in the narrow-band control. In this method, the signal to noise ratio between random noise for modeling and primary noise is low. Therefore, the estimations of transfer function will be prone to inaccuracies and the convergence time will be too long. Such imperfections will have an influence upon the performance of an active noise controller. In this study, t enhance the signal to noise ratio, the on-line method that is combined the conventional adaptive random noise technique and the adaptive line enhancer, is proposed. By using proposed on-line method, a rigorous system identification and control of primary noise have been implemented.

Experimental Study on the Active Control of Building Using Sliding Mode Control Method (슬라이딩 모드제어 기법을 적용한 건물의 능동제어 실험)

  • 김성춘;박정근;민경원;정진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.431-435
    • /
    • 2001
  • The active structural control has emerged as structural safety of structures against natural loadings such as earthquake and wind loadings. Of many control algorithms, Sliding-Mode Control (SMC) can design both linear controller and nonlinear controller. The robustness against parameter variations as well as excitation uncertainties that is imparted to the SMC due to its nonlinear control action, could make SMC an attractive control algorithm when dealing with structures where the external excitation constitutes the main uncertainty in the system. This paper demonstrates experimentally the efficacy of the SMC algorithm based on the active mass driver system in reducing the response of seismically excited buildings. The SMC control strategy is verified with the experimental study on the one-story building model equipped with the active mass driver.

  • PDF

Acoustic Power Control of a Lightly-Damped Enclosed Sound Field

  • Kim, Woo-Young;Kim, Dong-Kyu;Hwang, Won-Gul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This research attempts to find an active control strategy which reduces acoustic power and acoustic energy in lightly-damped enclosed sound field such as a vehicle compartment or an operating room of heavy industrial machinery. An active control strategy, which takes into consideration of the acoustic radiation power of the source as a cost function, is formulated and examined to find capability of reducing noise. An adaptive filtering algorithm for sound power control is suggested and implemented to control lightly-damped sound field. To verify the method, sound power based active noise control algorithm was implemented on a rectangular box with lightly-damped wall, and popular acoustic energy based control with modal coupling reduction was performed to compare the noise reduction performance. It was shown that a total sound power based strategy provides a practical mean for global noise reduction for lightly damped sound field.

  • PDF