• Title/Summary/Keyword: active flux

Search Result 298, Processing Time 0.029 seconds

MOGABA: Monitoring of Gamma-ray Bright AGN with KVN 21-m radio telescopes at 22, 43 and 86GHz

  • Lee, Sang-Sung;Byun, Do-Young;Baek, Junhyu;Han, Myounghee;Yang, Jihae;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.239.2-239.2
    • /
    • 2012
  • We report preliminary results of MOGABA project for monitoring total flux density, linearly polarized flux, and polarization angle at 22, 43 and 86GHz of Gamma-ray bright AGN (Active Galactic Nuclei) with KVN (Korean VLBI Network) 21-m radio telescopes. The project has been conducted in one year since May 2011 with an effective monitoring cycle of 1 week, observing four main objects (3C 454.3, BL Lac, 3C 273, and 3C 279). More objects were included in the source list when they had flared in Gamma-ray. Especially, we included a compact radio source at the Galactic center, SgrA* since Jan. 2012. In this paper, we report the current status of the project and preliminary results for the monitoring observations.

  • PDF

Simulation of time-domain bottom reverberation signal using energy-flux model (에너지 플럭스 모델을 활용한 해저 잔향음 신호 모의)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.96-105
    • /
    • 2019
  • Ocean reverberation is the most limiting factor in designing realistic and real-time system for sonar simulator. The simulation for an ocean reverberation requires a lot of computational loads, so it is hard to embed program and generate real-time signal in the sonar simulator. In this study, we simulate a time-domain bottom reverberation signal based on Harrison's energy-flux bottom reverberation model by applying Doppler effects as ship maneuvering and autoregressive model. Finally, the bottom reverberation signal with realistic characteristics could be generated for the simulation of ONR reverberation modeling workshop-I problem XI and East Sea ocean environments.

A New Method for Coronal Force-Free Field Computation That Exactly Implements the Boundary Normal Current Density Condition

  • Yi, Sibaek;Jun, Hongdal;Lee, Junggi;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.71.3-71.3
    • /
    • 2019
  • Previously we developed a method of coronal force-free field construction using vector potentials. In this method, the boundary normal component of the vector potential should be adjusted at every iteration step to implement the boundary normal current density, which is provided by observations. The method was a variational method in the sense that the excessive kinetic energy is removed from the system at every iteration step. The boundary condition imposing the normal current density, however, is not compatible with the variational procedure seeking for the minimum energy state, which is employed by most force-free field solvers currently being used. To resolve this problem, we have developed a totally new method of force-free field construction. Our new method uses a unique magnetic field description using two scalar functions. Our procedure is non-variational and can impose the boundary normal current density exactly. We have tested the new force-free solver for standard Low & Lou fields and Titov-Demoulin flux ropes. Our code excels others in both examples, especially in Titov-Demoulin flux ropes, for which most codes available now yield poor results. Application to a real active region will also be presented.

  • PDF

UV LINE EMISSIONS OF W UMa STARS (W UMa형 별들의 UV 방출선 연구)

  • 김용기;한동주
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2000
  • We reinvestigate UV line emissions of 44i Boo, W UMa, AW UMa and VW Cep, which are indicaters of chromospheric activity of these stars. C I, C II, C IV, Si IV lines show significant variation in orbital phase. Among those lines, the Line of C IV showed the strongest line flux. while other Si IV and N V lines showed relative low line intensities. 44i Boo emitted the strongest flux than other stars. UV light curves of target stars shoed UV maximum at phase around 0.2 an 0.8 Such UV emissions are generally believed to be observed at the active regions and contacting parts of the two stars due to the clear visibility at the phase 0.2 and 0.8. Total emissivity of four transitions lines lead to conclude that the activity of this region is 40 times larger than the quiet sun. It is obvious that the activity decrease according to increase period. We obtained also Mg II light curve of AW UMA and VW Cep. These stars showed more clearly phase-dependent light curves. We estimated effective temperature of two star, AW UMa and VW Cep, using by Mg II flux.

  • PDF

NO EXCESS OF STAR FORMATION IN THE z = 1.4 STRUCTURE: Hα OBSERVATIONS OF THE RADIO-LOUD AGN 6CE1100+3505 FIELD

  • Shim, Hyunjin;Lee, Jong Chul;Hwang, Narae;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.6
    • /
    • pp.235-244
    • /
    • 2019
  • We present the results of near-infrared imaging observations of the galaxy overdensity around the z = 1.44 radio-loud active galactic nucleus (AGN) 6CE1100+3505, which was carried out with the purpose of sampling the redshifted Hα emission from the actively star-forming galaxies that could constitute the overdensity. The existence of the structure around this AGN was spectroscopically confirmed by previous grism observations which are however limited to the central region. Using the CH4Off narrow/medium-band and H broad band filters in the Wide Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT), we constructed a sample of objects that show a flux excess in the CH4Off band due to line emission. The emission line flux is ~ 4.9 × 10-16 erg s-1 cm-2, corresponding to a star formation rate (SFR) of ~ 50 M yr-1 for galaxies at redshifts z ~ 1.4. None of the galaxies with medium-band flux excess is located within 1 Mpc from the central AGN, and there is no evidence that the selected galaxies are associated with the proposed cluster. Along with the star formation quenching near the center that was found from the previous grism observations, the lack of extreme starbursts in the structure suggests that at z ~ 1.4, overdense regions are no longer favorable locations for vigorous star formation.

Monitoring of Gamma-ray Bright Quasars 3C279 and 1510-089 at 22, 43 and 86GHz using KVN Single Dish Telescopes

  • Baek, Jun-Hyun;Lee, Sang-Sung;Byun, Do-Young;Yang, Jee-Hye;Han, Myoung-Hee;Sohn, Bong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.240.2-240.2
    • /
    • 2012
  • AGN(Active Galactic Nucleus) consists of a supermassive black hole located at its center, an accretion disk around the black hole, and bipolar jets. Since May 2011, we have performed the MOGABA(Monitoring Of GAmma-ray Bright AGN) project for observing gamma-ray bright AGN once a week at multifrequencies using KVN(Korean VLBI Network) 21m radio telescopes. The MOGABA project is the observations for measuring the degree of polarization, polarization angle, and total flux of about 20 AGN at 22, 43 and 86GHz. By this project, we are able to investigate polarization characteristics, spectral index, and variation of rotation measure at radio wavelengths of gamma-ray bright AGN and to study possible relation between gamma-ray flares and magnetic field structure change in AGN. According to previous research, gamma-ray flares of some AGN are coincident with large changes in angle of linear polarization. In this paper we report the preliminary results of linear polarization and total flux at 22, 43, 86GHz of gamma-ray bright quasars 3C279 and 1510-089 showing noticeable variation of total flux at 22GHz in late 2011, and discuss possible correlation with gamma ray light curves.

  • PDF

Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification (표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조)

  • Lee, Deok-Ro;Kim, Jong Hak;Kwon, Sei;Lee, Hye-Jin;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • With the rapid increase in seawater desalination, the importance of boron rejection is rising. This study was conducted to investigate the effect of hydrophilic compounds on surface modification to maximize water flux and increase boron rejection. First, polyamide active layer was fabricated by interfacial polymerization of polysulfone ultrafiltration membrane with M-phenylenediamine (MPD) and trimesoyl chloride (TMC) to obtain Control polyamide membrane. Next, D-gluconic acid (DGCA) and D-gluconic acid sodium salt (DGCA-Na) were synthesized with glutaraldehyde (GA) and hydrochloric acid (HCl) by modifying the surface of Control polyamide membrane. XPS analysis was carried out for the surface analysis of the synthesized membrane, and it was confirmed that the reaction of surface with DGCA and DGCA-Na compounds was performed. Also, FE-SEM and AFM analysis were performed for morphology measurement, and polyamide active layer formation and surface roughness were confirmed. In the case of water flux, the membrane fabricated by the surface modification had a value of 10 GFD or less. However, the boron rejection of the membranes synthesized with DGCA and DGCA-Na compounds were 94.38% and 94.64%, respectively, which were 12.03 %p and 12.29 %p larger than the Control polyamide membrane, respectively.

Synoptic Characteristics of the Main Path Types of 850hPa Surface Water Vapor Flux for Heavy Changma Rainfall in the South Coastal Region of Korea (한국 남해안의 장마철 호우 시 850hPa 등압면 수증기 수송 주 경로 유형의 종관 특성)

  • Park, Byong-Ik
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.150-166
    • /
    • 2011
  • This study aims to investigate the differences of synoptic characteristics and frontal structures over East Asia according to the main path types of water vapor flux (WVF) of 850hPa surface in cases of the heavy rainfall in the south coastal region of Korea during the Changma season (June and July), In the cases of type A in which the main path of WVF is running from the South china Sea via the South china to the South Sea of Korea, the North Pacific subtropical anticyclone (NPSA) expands to the South China and strong cyclones appear in the Yellow Sea. In cases of type B and C in those the main paths of WVF are running from the South China Sea via the Western Pacific Ocean near Taiwan to the South Sea and from the Western North Pacific Ocean to the South Sea respectively, tropical cyclones appear frequently near Taiwan and the NPSA shifts northward. In the case of type D in which the main path of WVF appear only near the South Sea, strong cyclones appear near the Yellow Sea. In all cases upper jets are intensified in the northern part of the heavy rainfall region and low-level jets appear near the main paths of WVF. In the view of frontal structure, deep active-type of the Changma front is identified in most cases of all types. In this point the Changma season is different from the Baiu season in Western Japan where many cases of shallow active-type of the Baiu front appear.

  • PDF

Formation of a large-scale quasi-circular flare ribbon enclosing three-ribbon through two-step eruptive flares

  • Lim, Eun-Kyung;Yurchyshyn, Vasyl;Kumar, Pankaj;Cho, Kyuhyoun;Kim, Sujin;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2016
  • The formation process and the dynamical properties of a large-scale quasi-circular flare ribbon were investigated using the SDO AIA and HMI data along with data from RHESSI and SOT. Within one hour time interval, two subsequent M-class flares were detected from the NOAA 12371 that had a ${\beta}{\gamma}{\delta}$ configuration with one bipolar sunspot group in the east and one unipolar spot in the west embedded in a decayed magnetic field. Earlier M2.0 flare was associated with a coronal loop eruption, and a two-ribbon structure formed within the bipolar sunspot group. On the other hand, the later M2.6 flare was associated with a halo CME, and a quasi-circular ribbon developed encircling the full active region. The observed quasi-circular ribbon was strikingly large in size spanning 650" in north-south and 500" in east-west direction. It showed the well-known sequential brightening in the clockwise direction during the decay phase of the M2.6 flare at the estimated speed of 160.7 km s-1. The quasi-circular ribbon also showed the radial expansion, especially in the southern part. Interestingly, at the time of the later M2.6 flare, the third flare ribbon parallel to the early two-ribbon structure also developed near the unipolar sunspot, then showed a typical separation in pair with the eastern most ribbon of the early two ribbons. The potential field reconstruction based on the PFSS model showed a fan shaped magnetic configuration including fan-like field lines stemming from the unipolar spot and fanning out toward the background decayed field. This large-scale fan-like field overarched full active region, and the footpoints of fan-like field lines were co-spatial with the observed quasi-circular ribbon. From the NLFF magnetic field reconstruction, we confirmed the existence of a twisted flux rope structure in the bipolar spot group before the first M2.0 flare. Hard X-ray emission signatures were detected at the site of twisted flux rope during the pre-flare phase of the M2.0 flare. Based on the analysis of both two-ribbon structure and quasi-circular ribbon, we suggest that a tether-cutting reconnection between sheared arcade overarching the twisted flux rope embedded in a fan-like magnetic field may have triggered the first M2.0 flare, then secondary M2.6 flare was introduced by the fan-spine reconnection because of the interaction between the expanding field and the nearby quasi-null and formed the observed large-scale quasi-circular flare ribbon.

  • PDF

MAGNETIC HELICITY CHANGES OF SOLAR ACTIVE REGIONS BY PHOTOSPHERIC HORIZONTAL MOTIONS

  • MOON Y.-J.;CHAE JONGCHUL;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.37-44
    • /
    • 2003
  • In this paper, we review recent studies on the magnetic helicity changes of solar active regions by photospheric horizontal motions. Recently, Chae(200l) developed a methodology to determine the magnetic helicity change rate via photospheric horizontal motions. We have applied this methodology to four cases: (1) NOAA AR 8100 which has a series of homologous X-ray flares, (2) three active regions which have four eruptive major X-ray flares, (3) NOAA AR 9236 which has three eruptive X-class flares, and (4) NOAA AR 8668 in which a large filament was under formation. As a result, we have found several interesting results. First, the rate of magnetic helicity injection strongly depends on an active region and its evolution. Its mean rate ranges from 4 to $17 {\times} 10^{40}\;Mx^2\;h^{-1}$. Especially when the homologous flares occurred and when the filament was formed, significant rates of magnetic helicity were continuously deposited in the corona via photospheric shear flows. Second, there is a strong positive correlation between the magnetic helicity accumulated during the flaring time interval of the homologous flares in AR 8100 and the GOES X-ray flux integrated over the flaring time. This indicates that the occurrence of a series of homologous flares is physically related to the accumulation of magnetic helicity in the corona by photospheric shearing motions. Third, impulsive helicity variations took place near the flaring times of some strong flares. These impulsive variations whose time scales are less than one hour are attributed to localized velocity kernels around the polarity inversion line. Fourth, considering the filament eruption associated with an X1.8 flare started about 10 minutes before the impulsive variation of the helicity change rate, we suggest that the impulsive helicity variation is not a cause of the eruptive solar flare but its result. Finally, we discuss the physical implications on these results and our future plans.