DOI QR코드

DOI QR Code

NO EXCESS OF STAR FORMATION IN THE z = 1.4 STRUCTURE: Hα OBSERVATIONS OF THE RADIO-LOUD AGN 6CE1100+3505 FIELD

  • Shim, Hyunjin (Department of Earth Science Education, Kyungpook National University) ;
  • Lee, Jong Chul (Korea Astronomy and Space Science Institute) ;
  • Hwang, Narae (Korea Astronomy and Space Science Institute) ;
  • Park, Byeong-Gon (Korea Astronomy and Space Science Institute)
  • Received : 2019.05.07
  • Accepted : 2019.12.05
  • Published : 2019.12.31

Abstract

We present the results of near-infrared imaging observations of the galaxy overdensity around the z = 1.44 radio-loud active galactic nucleus (AGN) 6CE1100+3505, which was carried out with the purpose of sampling the redshifted Hα emission from the actively star-forming galaxies that could constitute the overdensity. The existence of the structure around this AGN was spectroscopically confirmed by previous grism observations which are however limited to the central region. Using the CH4Off narrow/medium-band and H broad band filters in the Wide Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT), we constructed a sample of objects that show a flux excess in the CH4Off band due to line emission. The emission line flux is ~ 4.9 × 10-16 erg s-1 cm-2, corresponding to a star formation rate (SFR) of ~ 50 M yr-1 for galaxies at redshifts z ~ 1.4. None of the galaxies with medium-band flux excess is located within 1 Mpc from the central AGN, and there is no evidence that the selected galaxies are associated with the proposed cluster. Along with the star formation quenching near the center that was found from the previous grism observations, the lack of extreme starbursts in the structure suggests that at z ~ 1.4, overdense regions are no longer favorable locations for vigorous star formation.

Keywords

References

  1. Alberts, S., Pope, A., Brodwin, M., et al. 2014, The Evolution of Dust-obscured Star Formation Activity in Galaxy Clusters relative to the Field over the Last 9 Billion Years, MNRAS, 437, 437 https://doi.org/10.1093/mnras/stt1897
  2. Bai, L., Rieke, G. H., Rieke, M. J., Christlein, D., & Zabludoff, A. I., 2009, The Infrared Luminosity Functions of Rich Clusters, ApJ, 639, 1840
  3. Bayliss, M. B., Ashby, M. L. N., Ruel, J., et al. 2014, SPT-CL J2040-4451: An SZ-selected Galaxy Cluster at z = 1.478 with Significant Ongoing Star Formation, ApJ, 794, 12 https://doi.org/10.1088/0004-637X/794/1/12
  4. Beck, R., Dobos, L., Budavari, T., Szalay, A. S., & Csabai, I., 2016, Photometric Redshifts for the SDSS Data Release 12, MNRAS, 460, 1371 https://doi.org/10.1093/mnras/stw1009
  5. Bell, E. F., de Jong, R. S. 2001, Stellar Mass-to-Light Ratios and the Tully-Fisher Relation, ApJ, 550, 212 https://doi.org/10.1086/319728
  6. Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions, ApJS, 149, 289 https://doi.org/10.1086/378847
  7. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for Source Extraction, A&AS, 117, 393 https://doi.org/10.1051/aas:1996164
  8. Bertin, E, Mellier, Y., Radovich, M., et al. 2002, The TERAPIX Pipeline, ASP Conf. Ser., 281, 228
  9. Brodwin, M., Stanford, S. A., Gonzalez, A. H., et al. 2013, The Era of Star Formation in Galaxy Clusters, ApJ, 779, 138 https://doi.org/10.1088/0004-637X/779/2/138
  10. Bunker, A. J., Warren, S. J., Hewett, P. C., & Clements, D. L., 1995, On Near-infrared $H{\alpha}$ Searches for High-redshift Galaxies, MNRAS, 273, 513 https://doi.org/10.1093/mnras/273.2.513
  11. Chung, S. M., Eisenhardt, P. R., Gonzalez, A. H., et al. 2011, A WISE View of Star Formation in Local Galaxy Clusters, ApJ, 743, 34 https://doi.org/10.1088/0004-637X/743/1/34
  12. Clements, D. L., Braglia, F., Petitpas, G., et al. 2015, H-ATLAS: A Candidate High Redshift Cluster/Protocluster of Star-forming Galaxies, MNRAS, 461, 1719
  13. Cooke, E. A., Hatch, N. A., Muldrew, S. I., et al. 2014, A z = 2.5 Protocluster Associated with the Radio Galaxy MRC 2104-242: Star Formation and Differing Mass Functions in Dense Environments, MNRAS, 2014, 440, 3262 https://doi.org/10.1093/mnras/stu522
  14. Dannerbauer, H., Kurk, J. D., De Breuck, C., et al. 2014, An Excess of Dusty Starbursts Related to the Spiderweb Galaxy, A&A, 570, 55 https://doi.org/10.1051/0004-6361/201423771
  15. Darvish, B., Mobasher, B., Sobral, D., et al. 2016, The Effects of the Local Environment and Stellar Mass on Galaxy Quenching to z - 3, ApJ, 825, 113 https://doi.org/10.3847/0004-637X/825/2/113
  16. Davies, J. I., Baes, M., Bendo, G. J., et al. 2010, The Herschel Virgo Cluster Survey. I. Luminosity Function, A&A, 518, 48
  17. Dressler, A. 1980, Galaxy Morphology in Rich Clusters - Implications for the Formation and Evolution of Galaxies, ApJ, 236, 351 https://doi.org/10.1086/157753
  18. Dye, S., Lawrence, A., Read, M. A., et al. 2018, The UKIRT Hemisphere Survey: Definition and J-band Data Release, MNRAS, 473, 5113 https://doi.org/10.1093/mnras/stx2622
  19. Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, The Reversal of the Star Formation-Density Relation in the Distant Universe, A&A, 468, 33 https://doi.org/10.1051/0004-6361:20077525
  20. Fumagalli, M., Patel, S. G., Franx, M., et al. 2012, $H{\alpha}$ Equivalent Widths from the 3D-HST Survey: Evolution with Redshift and Dependence on Stellar Mass, ApJL, 757, 22 https://doi.org/10.1088/0004-637X/757/1/22
  21. Garn, T. & Best, P. N. 2010, Predicting Dust Extinction from the Stellar Mass of a Galaxy, MNRAS, 409, 421 https://doi.org/10.1111/j.1365-2966.2010.17321.x
  22. Geach, J. E., Smail, I., Ellis, R. S., et al. 2006, A Panoramic Mid-Infrared Survey of Two Distant Clusters, ApJ, 649, 661 https://doi.org/10.1086/506469
  23. Hatch, N. A., Kurk, J. D, Pentericci, L., et al. 2011, $H{\alpha}$ Emitters in z - 2 Protoclusters: Evidence for Faster Evolution in Dense Environments, MNRAS, 415, 2993 https://doi.org/10.1111/j.1365-2966.2011.18735.x
  24. Hayashi, M., Kodama, T., Koyama, Y., et al. 2010, High Star Formation Activity in the Central Region of a Distant Cluster at z = 1.46, MNRAS, 402, 1980 https://doi.org/10.1111/j.1365-2966.2009.16026.x
  25. Ilbert, O., Arnouts, S., Le Floc'h, E., et al. 2015, Evolution of the Specific Star Formation Rate Function at z < 1.4 - Dissecting the mass-SFR plane in COSMOS and GOODS, A&A, 579, 2
  26. Iglesias-Paramo, J., Boselli, A., Cortese, L., Vilchez, J. M., & Gavazzi, G., 2002, A Deep $H{\alpha}$ Survey of Galaxies in the Two Nearby Clusters Abell 1367 and Coma. The $H{\alpha}$ Luminosity Functions, A&A, 384, 383 https://doi.org/10.1051/0004-6361:20011830
  27. Kauffmann, G., White, S. D. M., Heckman, T. M., et al. 2004, The Environmental Dependence of the Relations between Stellar Mass, Structure, Star Formation and Nuclear Activity in Galaxies, MNRAS, 353, 713 https://doi.org/10.1111/j.1365-2966.2004.08117.x
  28. Kennicutt, R. C. Jr., 1998, Star Formation in Galaxies Along the Hubble Sequence, ARA&A, 36, 189 https://doi.org/10.1146/annurev.astro.36.1.189
  29. Khostovan, A. A., Sobral, D., Mobasher, B., et al. 2015, Evolution of the $H{\beta}$+[O III] and [O II] Luminosity Functions and the [O ii] Star Formation History of the Universe up to z - 5 from HiZELS, MNRAS, 452, 3948 https://doi.org/10.1093/mnras/stv1474
  30. Lee, S.-K., Im, M., Kim, J.-W., et al. 2015, Evolution of Star-formation Properties of High-redshift Cluster Galaxies since z = 2, ApJ, 810, 90 https://doi.org/10.1088/0004-637X/810/2/90
  31. Ma, C.-J., Smail, I., Swinbank, A. M., et al. 2015, Dusty Starbursts and the Formation of Elliptical Galaxies: A SCUBA-2 Survey of a z = 1.46 Cluster, ApJ, 806, 257 https://doi.org/10.1088/0004-637X/806/2/257
  32. Marmol-Queralto, E., McLure, R. J., Cullen, F., et al. 2016, The Evolution of the Equivalent Width of the $H{\alpha}$ Emission Line and Specific Star Formation Rate in Star-forming Galaxies at 1 < z < 5, MNRAS, 460, 3587 https://doi.org/10.1093/mnras/stw1212
  33. Miller, T. B., Hayward, C. C., Chapman, S. C., et al. 2015, The Bias of the Submillimetre Galaxy Population: SMGs are Poor Tracers of the Most-massive Structures in the z - 2 Universe, MNRAS, 452, 878 https://doi.org/10.1093/mnras/stv1267
  34. Nantais, J. B., Muzzin, A., van der Burg, R. F. J., et al. 2017, Evidence for Strong Evolution in Galaxy Environmental Quenching Efficiency between z = 1.6 and z = 0.9, MNRAS, 465, 104 https://doi.org/10.1093/mnrasl/slw224
  35. Noirot, G., Stern, D., Mei, S., et al. 2018, HST Grism Confirmation of 16 Structures at 1.4 < z < 2.8 from the Clusters Around Radio-Loud AGN (CARLA) Survey, 2018, ApJ, 859, 38 https://doi.org/10.3847/1538-4357/aabadb
  36. Osterbrock, D. E., & Ferland, G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Sausalito, CA: University Science Books)
  37. Papovich, C., Rudnick, G., Le Floc'h, E., et al. 2007, Spitzer Mid- to Far-Infrared Flux Densities of Distant Galaxies, ApJ, 668, 45 https://doi.org/10.1086/521090
  38. Puget, P., Stadler, E., Doyon, R., et al. 2004, WIRCam: The Infrared Wide-field Camera for the Canada-France-Hawaii Telescope, Proc. SPIE, 5492, 978
  39. Santos, J. S., Altieri, B., Popesso, P., et al. 2013, Dust-obscured Star Formation in the Outskirts of XMMU J2235.3-2557, a Massive Galaxy Cluster at z = 1.4, MNRAS, 433, 1287 https://doi.org/10.1093/mnras/stt811
  40. Sawicki, M., 2002, The 1.6 Micron Bump as a Photometric Redshift Indicator, AJ, 124, 3050 https://doi.org/10.1086/344682
  41. Shimakawa, R., Kodama, T., Hayashi, M., et al. 2018, MAHALO Deep Cluster Survey I. Accelerated and Enhanced Galaxy Formation in the Densest Regions of a Protocluster at z = 2.5, MNRAS, 473, 1977 https://doi.org/10.1093/mnras/stx2494
  42. Sobral, D., Smail, I., Best, P. N., et al. 2013, A Large $H{\alpha}$ Survey at z = 2.23, 1.47, 0.84 and 0.40: The 11 Gyr Evolution of Star-forming Galaxies from HiZELS, MNRAS, 428, 1128 https://doi.org/10.1093/mnras/sts096
  43. Sobral, D., Matthee, J., Best, P. N. et al. 2015, CF-HiZELS, an - 10 $deg^2$ Emission-line Survey with Spectroscopic Follow-up: $H{\alpha}$, [O III] + $H{\beta}$ and [O II] Luminosity Functions at z = 0.8, 1.4 and 2.2, MNRAS, 451, 2303 https://doi.org/10.1093/mnras/stv1076
  44. Stach, S. M., Swinbank, A. M., Smail, I., et al. 2017, ALMA Pinpoints a Strong Overdensity of U/LIRGs in the Massive Cluster XCS J2215 at z = 1.46, ApJ, 849, 154 https://doi.org/10.3847/1538-4357/aa93f6
  45. Strazzullo, V., Pannella, M., Mohr, J. J., et al. 2019, Galaxy Populations in the Most Distant SPT-SZ Clusters - I. Environmental Quenching in Massive Clusters at 1.4 ${\leq}$ z < 1.7, A&A, 622, 117 https://doi.org/10.1051/0004-6361/201833944
  46. Thanjavur, K., Teeple, D., & Yan, C.-H. 2011, CFHT Data Processing and Calibration Pipeline for WIRCam: Iiwi (near-IR imaging), in: Telescopes from Afar, eds. S. Gajadhar, J. Walawender, R. Genet, et al., 72
  47. Umehata, H., Tamura, Y., Kohno, K., et al. 2015, ALMA Deep Field in SSA22: A Concentration of Dusty Starbursts in a z = 3.09 Protocluster Core, ApJL, 815, 8 https://doi.org/10.1088/0004-637X/815/1/8
  48. van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2005, Mass-to-Light Ratios of Field Early-Type Galaxies at z - 1 from Ultradeep Spectroscopy: Evidence for Mass-dependent Evolution, ApJ, 631, 145 https://doi.org/10.1086/430464
  49. Wagner, C. R., Courteau, S., Brodwin, M., et al. 2017, The Evolution of Star Formation Activity in Cluster Galaxies over 0.15 < z < 1.5, ApJ, 834, 53
  50. Wylezalek, D., Galametz, A., Stern, D., et al. 2013, Galaxy Clusters around Radio-loud Active Galactic Nuclei at 1.3 < z < 3.2 as Seen by Spitzer, ApJ, 769, 79 https://doi.org/10.1088/0004-637X/769/1/79