• Title/Summary/Keyword: active damping system

Search Result 301, Processing Time 0.026 seconds

Seismic Response Control of Structures Using Variable Stiffness and Variable Damping Devices (가변강성 및 가변감쇠 조절장치를 이용한 구조물의 지진응답제어)

  • 고현무;옥승용;우지영;박관순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.449-456
    • /
    • 2003
  • Hybrid semi-active control system is applied to improve the seismic peformance of the building structure against earthquake excitation and the LQR-based semi-active control algorithm is developed to tune the integrated stiffness/damping characteristics of the hybrid system complementarily. Numerical simulation for a 8-story shear building has been carried out to verify the applicability and effectiveness of the proposed method. Analysis results showed that the hybrid system can be a compromising solution to the seismic response control problem, compared with conventional variable stiffness or variable damping systems. Comparison results proved that the proposed algorithm can perform refined tuning of the stiffness and damping coefficients of the hybrid semi-active control system better than sliding mode control algorithm.

  • PDF

An Active Damping Device for a Distributed Power System (전력시스템을 위한 Active Damping Device)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Distributed power systems (DPSs) has been widely used various industrial/military applications due to their various advantages. Furthermore, the "All electric" concept, in conjunction with DC DPS, appears to be more advanced and mature in the AEV(All-Electric Vehicular) industry. Generally, AEV carry many loads with varied functions. However, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and a simple adaptive controller is proposed as a active damping device to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. In addition, the proposed control approach has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. The control algorithm has been implemented on a TMS320F2812 Digital Signal Processor (DSP). Simulation and experimental results are presented which verify the proposed control principle and demonstrate the practicality of the circuit topology.

Dynamic Analysis of Plates with Active Constrained Layer Damping (능동구속층 감쇠를 이용한 판의 동역학적 해석)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.581-586
    • /
    • 2004
  • This paper presents Newtonian formulation of the dynamics of plates treated fully with Active Constrained Layer Damping (ACLD). The developed equations of the plate/ACLD system provide analytical models far predicting the dynamic of laminated plates subjected to passive and active vibration damping controls. Numerical solutions of the analytical models are presented fir simply-supported plates in order to study the performance of the plate/ACLD system for different control strategies. The developed models present invaluable means for designing and predicting the performance of the smart laminated plates that can be used in many critical engineering applications.

  • PDF

A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper (감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구)

  • Lee, K.H.;Lee, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF

Reduced-mass Adaptive TMD for Tall Buildings Damping

  • Weber, Felix;Huber, Peter;Spensberger, Simon;Distl, Johann;Braun, Christian
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Tall buildings are prone to wind-induced vibrations due to their slenderness whereby peak structural accelerations may be higher than the recommended maximum value. The common countermeasure is the installation of a tuned mass damper (TMD) near the highest occupied floor. Due to the extremely large modal mass of tall buildings and because of the narrow to broad band type of wind excitation the TMD mass may become inacceptable large - in extreme cases up to 2000 metric tons. It is therefore a need to develop more efficient TMD concepts which provide the same damping to the building but with reduced mass. The adaptive TMD concept described in this paper represents a solution to this problem. Frequency and damping of the adaptive TMD are controlled in real-time by semi-active oil dampers according to the actual structural acceleration. The resulting enhanced TMD efficiency allows reducing its mass by up to 20% compared to the classical passive TMD. The adaptive TMD system is fully fail-safe thanks to a smart valve system of the semi-active oil dampers. In contrast to active TMD solutions the adaptive TMD is unconditionally stable and its power consumption on the order of 1 kW is negligible small as controllable oil dampers are semi-active devices. The adaptive TMD with reduced mass, stable behavior and lowest power consumption is therefore a preferable and cost saving damping tool for tall buildings.

Active Damping of LCL Filter for Three-phase PWM Inverter without Additional Hardware Sensors (추가적인 센서가 필요 없는 3상 PWM 인버터의 LCL 필터 능동댐핑)

  • An, Byoung-Woong;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Han, Byoung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • In this paper, a new active damping method of LCL filter without capacitor voltage sensors is proposed for 3 phase PWM Inverter. Normally, L filter or LCL filter is used as an output filter of grid connected PWM inverter. An LCL filter has more excellent performance than L filter to reduce harmonic current, so the small inductance value can be used. However, the resonance problem in LCL filter is happen due to the zero impedance by the addition of LC branch. To solve the resonance problem, the various active damping method has been proposed so far. Generally, the virtual resistor active damping methods is required to additional hardware sensors for measurement of capacitor voltage and current. In this paper, the new active damping method is proposed without any capacitor voltage or current sensors. In the proposed method, the resonance component of the capacitor voltage of LCL filter can be observed by a simple MRAS(Model Reference Adaptive System) observer without additional hardware sensors, and this component is suppressed by feedforward compensation. The validity of the proposed method is proven by simulation and experiment on the 3-phase PWM inverter system.

New Design Approach for Grid-Current-Based Active Damping of LCL Filter Resonance in Grid-Connected Converters

  • Gaafar, Mahmoud A.;Dousoky, Gamal M.;Ahmed, Emad M.;Shoyama, Masahito;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1165-1177
    • /
    • 2018
  • This paper investigates the active damping of grid-connected LCL filter resonance using high-pass filter (HPF) of the grid current. An expression for such HPF is derived in terms of the filter components. This expression facilitates a general study of the actively damped filter behavior in the discrete time domain. Limits for the HPF parameters are derived to avoid the excitation of unstable open loop poles since such excitation can reduce both the damping performance and the system robustness. Based on this study, straightforward co-design steps for the active damping loop along with the fundamental current regulator are proposed. A numerical example along with simulation and experimental results are presented to verify the theoretical analyses.

Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System (비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구)

  • Kim, J.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

Performance Investigation of Variable Damping Shock Attenuation Logic (가변 감쇠를 이용한 충격제어기법의 성능분석)

  • Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Launch vehicles cause several shock events during their lift-off. The excessive shock loads in the several thousands of g's level can results in permanent damage to electronics, optics and other sensitive payload components. The shock can be attenuated by mounting a shock absorber. In this paper, we proposed a semi-active control logic to attenuate the shock so that the input acceleration to main instruments does not exceed the allowable maximum acceleration value. For the performance investigation, two elements model of variable damping and spring stiffness has been used and the analysis results indicate that the proposed semi-active control logic attenuates shock level better than an optimal passive and conventional semi-active on-off control system.

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.