
1165           

 
 https://doi.org/10.6113/JPE.2018.18.4.1165 

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718 

 

JPE 18-4-19 

Journal of Power Electronics, Vol. 18, No. 4, pp. 1165-1177, July 2018 

New Design Approach for Grid-Current-Based 
Active Damping of LCL Filter Resonance in 

Grid-Connected Converters 
 

Mahmoud A. Gaafar†, Gamal M. Dousoky*, Emad M. Ahmed**,***, 
Masahito Shoyama****, and Mohamed Orabi‡ 

 
†, ‡APEARC, Faculty of Engineering, Aswan University, Aswan, Egypt 

*Electrical Engineering Dept., Minia University, Alminia, Egypt 
**Dept. of Electrical Engineering, Jouf University, Aljouf, Saudi Arabia 

***Dept. of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, Egypt 
****Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan 

  

 
Abstract 

 

This paper investigates the active damping of grid-connected LCL filter resonance using high-pass filter (HPF) of the grid 
current. An expression for such HPF is derived in terms of the filter components. This expression facilitates a general study of 
the actively damped filter behavior in the discrete time domain. Limits for the HPF parameters are derived to avoid the excitation 
of unstable open loop poles since such excitation can reduce both the damping performance and the system robustness. Based on 
this study, straightforward co-design steps for the active damping loop along with the fundamental current regulator are proposed. 
A numerical example along with simulation and experimental results are presented to verify the theoretical analyses. 
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I. INTRODUCTION 

For grid-connected converters, LCL filters are more 
interesting when compared to L filters due to their higher 
attenuation for switching harmonics along with lower weight 
and volume [1], [2]. From the control view point, the current 
control strategies developed for grid-connected converters 
should fulfill a number of objectives include sinusoidal grid 
current, fast transient response, high robustness against 
parameters variations, implementation simplicity and 
achieving zero steady-state error in the grid current [3]. LCL 
filters introduce two extra poles which reduce system stability. 

Therefore, achieving the aforementioned objectives for an 
LCL filter based system requires a complex control algorithm 
equipped with a resonance damping technique [3]. Various 
linear and non-linear control strategies have been proposed 
for LCL filter based single-phase grid-connected converters. 

Hysteresis current control methods can achieve most of the 
aforementioned objectives such as fast transient response, 
high robustness to parameter variations and implementation 
simplicity [4]-[7]. However, keeping the measured current 
within a hysteresis band results in a variable switching 
frequency that may result in undesired current harmonics. 
Sliding mode control based methods offer simple 
implementation, fast dynamic response and high robustness 
[8], [9]. However, they suffer from the chattering phenomenon 
and variable switching frequency. Composite nonlinear 
feedback and Lyapunov-function based control methods have 
been adopted. However, their implementation is not simple 
[10], [11]. 

Other control methods, such as repetitive control [12], 
predictive control [13], intelligent control [14] and neural- 
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network based control [15], have been adopted for the current 
loop control of inverters. However, there are some limitations 
associated with these methods. For example, predictive 
control needs precise system parameters to reach the desired 
performance, intelligent control has a variable switching 
frequency that may result in undesired current harmonics, 
repetitive control shows a slow dynamic response, and 
neural-network based control requires a complex training 
process. 

Using a conventional PI-based controller in the stationary 
reference frame results in a steady state error in tracking 
sinusoidal references [16]. On the other hand, an imaginary 
control circuit is required if synchronous reference frame 
implementation is adopted. To overcome the problems of 
conventional PI controllers in the stationary reference frame, 
a PR controller has been proposed. PR controllers are widely 
used in the control of single-phase inverters [11], [17], [18]. 

From the stability viewpoint, a single grid current control 
loop can be adopted for resonant frequencies of more than 
one-sixth of the sampling frequency [1]. However, this 
technique is not always suitable especially in weak grids 
where the grid inductance varies significantly. Optimized 
loop shaping for both a current controller and an active 
damper (AD) has been proposed in [19] using a complicated 
fifth-order feedback. Passive damping configurations have 
been presented in [1][1]. However, they increase both the 
power losses and the filter size. Recently, active damping by 
modifying the control system has been getting a lot of 
attention. A cascade digital filter can be used for this purpose 
[20]. However, this decreases the system bandwidth and is 
highly dependent on the varied grid side inductance. Active 
damping based on state variables feedback is more desirable. 
In this regard, using the filter capacitor current or voltage 
feedback have been investigated [21]-[31]. However, these 
methods make additional current/voltage sensors or 
complicated estimation loops necessary. 

Grid-current-based active damping is more desirable since 
there is no need for additional sensors or complicated control 
algorithms. Ideally, this needs an s2 term in the active 
damping loop [32]. However, it is not implemented 
practically due to noise amplification. Two approaches have 
been presented in the literature to overcome this issue. One of 
these approaches employs a second order Infinite Impulse 
Response (IIR) filter [33]. However, the control system is 
complicated and a large number of iterations are needed to 
meet pre-specified behavior. The second approach, which is 
the main focus of this paper, employs a HPF of the grid 
current feedback [32], [34]-[36]. In [32], a HPF is designed in 
the s-domain to behave as an ideal s2 term around the 
resonant frequency. However, these studies do not provide 
straightforward design steps especially for discrete 
implementation. In [34], an independent design for an HPF 
and Synchronous Rotating Frame Proportional-Integrator 

(SRFPI) current regulator has been proposed. 
In both [16] and [18], there is no consideration of the 

transport delays of the digitally controlled systems and their 
effect on the open loop system stability which, upon violation, 
can decline the damping performance and the system 
robustness. Moreover, as indicated in [35], both the AD and 
the fundamental current regulator must be designed together 
to achieve a pre-specified performance. 

Based on s-domain emulation of a digitally controlled 
system, a virtual impedance model for a grid-current-based 
actively damped filter has been derived in [35] as a shunt 
impedance across the grid side inductance. It was determined 
that unstable open loop behavior can be avoided for resonant 
frequencies up to 0.28 of the sampling frequency. However, 
for certain resonant frequencies, it cannot identify the 
parametric influence of the HPF on the open loop stability. 
Consequently, the tuning process becomes tedious and a lot 
of iterations are needed to design the HPF along with the 
fundamental current regulator without open loop stability 
violation. In addition, it is cost effective to design LCL filters 
with higher resonant frequencies, and without violation of 
open loop stability especially when selective harmonic 
compensation is of concern [25]. 

From the above discussion, the following challenges can be 
identified when handling grid-current-based active damping. 

• Extending the resonant frequency range over which 
unstable open loop behavior can be avoided. 

• Identifying the parametric influence of the HPF on the 
open loop system stability of digitally controlled 
systems. 

• Straightforward design steps for the HPF along with 
the fundamental current regulator. 

Following this introduction, an expression of the HPF is 
derived. Using this expression, a detailed study for the 
actively damped filter is carried out in the discrete time 
domain to clarify the effect of HPF parameters on open loop 
stability. After that, straightforward design steps for the HPF 
along with the fundamental current regulator are presented. 
To verify the theoretical analyses, a numerical example along 
with experimental results at different resonant frequencies are 
presented. Finally, some conclusions are introduced. 

 

II. PROPOSED HPF FORM FOR ACTIVE DAMPING 

A. System Description 

Using an LCL filter, a grid-connected single phase inverter 
is shown in Fig. 1. The control system is shown in Fig. 2. A 
proportional resonant (PR) controller, represented in (1) as Gc(s), is used as a current regulator with ߱௢ = ߨ2 ௢݂, where ωo and fo are the grid frequency in rad/sec and Hz, 
respectively. Proportional capacitor current feedback (Hd) is 
adopted as the AD for the filter resonance. The filter resonant 
frequency is expressed in (2) in rad/sec. 
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Fig. 1. Inverter connected to a grid through an LCL filter. 
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Fig. 2. System block diagram with capacitor current feedback. 
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Fig. 3. Manipulation of the active damping method, which uses a proportional feedback of the capacitor current, sequentially from 
(a) to (d). 

(ݏ)௖ܩ  = ௣ܭ + ௄ೝௌௌమାఠ೚మ             (1) 

߱௥௘௦ = ට൫ܮ௜ + ௚൯ܮ ൫ܮܥ௜ܮ௚൯ൗ          (2) 

This system is manipulated in Fig. 3. From Fig. 3(c), the 
capacitor current feedback is equivalent to three feedback 
loops of the modulated inverter voltage (vi), the capacitor 
voltage (vc) and the grid current (ig). The system is further 
manipulated in Fig. 3(d) as follows. 

• The capacitor voltage feedback is shifted towards the 
grid current producing a proportional term ൫ܪௗ൫ܮ௜ + ௚൯ܮ ⁄௜ܮ ൯. 

• The modulated voltage feedback is augmented as a 
cascaded HPF and expressed as Gh(s) in (3) where ߱௛ = ௗܪ ⁄௜ܮ (ݏ)௛ܩ  . = ଵఠ೓ ∙ ௦ଵା௦ ఠ೓⁄             (3) 

B. Proposed Active Damper Expression 

The HPF Gh(s) in Fig. 3(d) is eliminated from the main 
control loop and inserted in the grid current damping loop as 
shown in Fig. 4. The damping feedback loop is still a HPF, 
expressed in (4) as Gad(s). To acquire flexibility, the gain of 
Gad(s) is re-written in (5) as the product of a new variable (r) 
with a constant quantity (Li+Lg). ܩ௔ௗ(ݏ) = ௦(௅೔ା௅೒)ଵା௦ ఠ೓⁄ (ݏ)௔ௗܩ (4)                = ௦௥(௅೔ା௅೒)ଵା௦ ఠ೓⁄            (5) 

Unlike the general HPF expressions used in [32],[34]-[35],  
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Fig. 4. System block diagram with a HPF of the grid current 
feedback. 
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Fig. 5. Discrete representation of the overall system. 
 

expressing the HPF gain in terms of the filter inductances 
helps clarify the parametric influence of the HPF on open 
loop stability as indicated in the following sections. 

 

III. DISCRETE IMPLEMENTATION 

A. System Discretization 

Fig. 5 shows the system discrete representation where Gig(z) 
is the discrete  transfer function relating the modulated 
inverter voltage to the grid current. It is determined using a 
zero-order-hold (ZOH) discretization of its continuous 
counterpart Gig(s). Both Gig(s) and Gig(z) are expressed in (6) 
and (7), respectively. Gc(s) and Gad(s) are discretized using 
Tustin approximations as expressed in (8) and (9) where Ts 
denotes the sampling time. The digital signal processor (DSP) 
delay is modeled by one sample delay. ܩ௜௚(ݏ) = ூ೒(௦)௏೔(௦) = ଵ௅೔௅೒஼௦൫௦మାఠೝ೐ೞమ ൯         (6) 
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Fig. 6. Pole maps of Fnew(z) with sweeping βh  
(at r=1 and different βres). 

 

      (a)  (b) 
Fig. 7. Pole maps of Fnew(z) with sweeping βres at βh=0.5 and different values of r: 
(a) 1≥r>0; (b) r<0. 

(ݖ)௜௚ܩ    = ೞ்൫௅೔ା௅೒൯ ቀ(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)(௭ିଵ)(௭మିଶ௭ ௖௢௦(ఋ)ାଵ) ቁ    (7) ܩ௖(ݖ) = ௣ܭ + ௥ܭ ௦௜௡(ఠ೚ ೞ்)ଶఠ೚ ௭మିଵ(௭మିଶ௭ ௖௢௦(ఠ೚ ೞ்)ାଵ)    (8) ܩ௔ௗ(ݖ) = ௔ௗܭ ௭ିଵ௭ାఠೌ೏              (9) 

where: ߜ = ݏ݁ݎ߱ ௦ܶ, ߙ = ௦௜௡(ఠೝ೐ೞ ೞ்)ఠೝ೐ೞ ೞ் , 
 

௔ௗܭ(10) = ଶఠ೓௥(௅೔ା௅೒)ఠ೓ ೞ்ାଶ , ߱௔ௗ = ߱௛ ௦ܶ − 2߱௛ ௦ܶ + 2 
 

To generalize the analyses, both ωres and ωh are expressed 

in terms of the sampling frequency (⍵s) as in (11). Then the 
expressions in (10) are re-written in (12). ߱௥௘௦ = ௥௘௦߱௦,   ߱௛ߚ = ߜ ௛߱௦          (11)ߚ = ߙ ,ݏ݁ݎߚߨ2 = ௦௜௡(ଶగఉೝ೐ೞ)ଶగఉೝ೐ೞ ,

 
௔ௗܭ(12) = ଶఠ೓௥(௅೔ା௅೒)ଶగఉ೓ାଶ , ߱௔ௗ = ଶగఉ೓ିଶଶగఉ೓ାଶ 

 
Using (7), (9) and (12), the actively damped filter (Fnew(z)) 

is expressed in (13). Its gain depends on the specific values of 
the sampling frequency and the filter inductances. However, 
the zeros and poles of Fnew(z) do not depend on these specific 
values. They depend on r (the gain-multiplier of the HPF), 
βres (the ratio of ωres to ωs) and βh (the ratio of ωh to ωs). Since 
the PR controller expressed in (8) does not have any unstable 

poles, the open loop stability ( ௢ܶ௣௘௡(ݖ) =  is ((ݖ)௡௘௪ܨ(ݖ)௖ܩ

implied only by Fnew(z), and in turn, by r, βres and βh. 
In the next sections, the effects of r, βres and βh on the 

stability of Fnew(z) are investigated. From (13), Fnew(z) has one 
constant pole at z=1 and four poles that depend on r, βres and 
βh; two resonant poles, and other two are called non-resonant 
poles. 

B. Discussing the Effects of the HPF Parameters 

In Fig. 6, the pole map of Fnew(z) is plotted by sweeping βh 
from 0 to 0.5 (corresponding to ωh, which is equal to the 
Nyquist frequency) at a constant value of r=1 (corresponding 
to a HPF gain of (Li+Lg)) and three values of βres 
(βres1<βres2<βres3; corresponding to different resonant 
frequencies). The following remarks can be revealed from 
this plot. 

1. In addition to the constant pole at z=1, one of the 
non-resonant poles is also constant at z=1. The second 
non-resonant pole tracks entirely inside the unit circle 
for all values of βres (its track direction is not shown for 
the sake of clarity).  

2. The tracks of the resonant poles start from some point 
on the unit circle (corresponding to an undamped LCL 
filter). By increasing βh, the resonant poles can track 
entirely inside the unit circle (as for βres1), or they can 
track entirely outside the unit circle (as for βres3). In 
addition, they can initially track outside the unit circle 
before tracking inside the unit circle above a certain 
value of βh (as for βres2). 

 
From the second remark, it is expected that there is a 

maximum limit for βres above which Fnew(z) is unstable  in  
the range of βh (<0.5). This maximum limit is denoted as 
βres-max (corresponding to the resonant frequency of ωres-max). 
At βres-max, the resonant poles should track outside the unit 
circle and end by an intersection with the unit circle at βh=0.5. 
Based on this understanding, βres-max is determined by plotting 
a pole map of Fnew(z) while sweeping βres at a constant value 
of βh=0.5. 

To investigate the effect of HPF gain variations, pole maps 
are plotted for the two regions of (0<r≤1) and (r<0) as shown 
in Figs. 7 (a) and (b), respectively. In these plots, βres is swept 
from 0.1 to 0.45 (theoretically, βres can be extended to 0.5. 
However, due to resonant frequency variations with discrete 
implementation, the resonant frequency should be adequately 
far from the vicinity of the Nyquist frequency [37]). From  
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Fig. 8. Pole maps of Fnew(z) with sweeping βres for 1≥r>0 and different values of βh: (a) βh=0.4; (b) βh=0.3; (c) βh=0.2. 
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Fig. 9. Pole maps of Fnew(z) with sweeping βres for r<0 at different values of βh: (a) βh=0.4; (b) βh=0.3; (c) βh=0.2. 

 

these figures, it can be revealed that: 
• For 0<r≤1: in Fig. 7(a), the resonant poles track initially 

inside the unit circle before tracking outside the unit 
circle above a certain value of βres=βres-max. It is observed 
that all of the tracks of the resonant poles intersect with 
the unit circle at certain points corresponding to the 
resonant poles denoted as P1,2. Accordingly, for 0<r≤1, 
Fnew(z) is stable only for resonant frequencies below the 
value of ωres-max (=βres-maxωs).  

• For r<0: in Fig. 7(b), the resonant poles track initially 
outside the unit circle before tracking inside the unite 
circle above a certain value of βres. This value is denoted 
as βres-min. Furthermore, it is observed that all of the 
tracks of the resonant poles intersect with the unit circle 
at the points corresponding to the resonant poles P1,2. 
For the low values of r in this region and with increasing 
βres above βres-min, one of the non-resonant poles tracks 
outside the unit circle above  a certain value of βres 

corresponding to one of the non-resonant poles at (-1,0). 
This value is denoted as βres-high. Accordingly, for a 
certain value of r<0, Fnew(z) is stable only over the 
resonant frequency range between ωres-min (=βres-minωs) 
and ωres-high (=βres-highωs). By decreasing r in this region, 
the range between βres-min and βres-high shrinks untill it 
vanishes at a certain r corresponding to βres-min=βres-high. 

This value of r is denoted as rb with the corresponding 
βres denoted as βres-b. 

C. HPF Cutoff Frequency Variations at Different HPF 
Gains 

For the two regions of r (0<r≤1 and r<0), the above 
analyses are repeated in Figs. 8 and 9 for three values of βh 
(0.4, 0.3 and 0.2). It is shown that by decreasing βh, the 
resonant poles P1,2 move to the right on the unit circle. The 
performance in the two ranges of r is still the same. For 
0<r≤1, Fnew(z) is stable below a certain value of βres= βres-max; 
for r<0, Fnew(z) is stable over a certain range of βres-min <βres< 
βres-high. 

 

IV. REGIONS FOR A STABLE OPEN LOOP SYSTEM 

Two regions of r can be identified for a certain βh as 
follows: 

1. 0<r≤1; for a certain r in this region, Fnew(z) is stable only 
for resonant frequencies below a certain value of ωres-max.  

2. 0>r≥rb; for a certain r in this region, Fnew(z) is stable only 
over  the resonant frequency range of ωres-min< 
ωres<ωres-high.  

The values of βres-max, βres-min, βres-b and rb can be determined 
for a certain value of βh as follows. At βres-max or βres-min, it was  
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Fig. 10. HPF gain factor (r) along with |P3| and |P4| versus 
βres-max/βres-min at βh=0.5. 

 

shown that Fnew(z) has five poles: one pole at z=1, two 
resonant  poles at P1,2 and two non-resonant poles (denoted 
as P3 and P4). Accordingly, the denominator of Fnew(z) at 
βres-max or βres-min can be expressed as (14).     ݀݁݊൫ܨ௡௘௪(ݖ)൯หఉೝ೐ೞష೘ೌೣ ఉೝ೐ೞష೘೔೙⁄ ݖ) = − 1)൫ݖ ± ଵܲ,ଶ൯(ݖ − ଷܲ)(ݖ − ସܲ)       (14)  

By expanding (14) and equating its coefficients with the 
denominator coefficients of Fnew(z), expressed in (13), the 
expressions of (15), (16) and (17) are derived to determined r, 
P3 and P4, respectively. ݎ = ଶగఉ೓ାଶସగఉ೓ ∙ ୡ୭ୱ ఋିோ௘௔௟൛௉భ,మൟ(ଵିఈ)∙ோ௘௔௟൛௉భ,మൟାఈିୡ୭ୱ ఋ       (15) 

ଷܲ =ଵଶ ൬2 cos ߜ − ߱௔ௗ − 2ܴ݈݁ܽ൛ ଵܲ,ଶൟ −ට൫2 cos ߜ − ߱௔ௗ − 2ܴ݈݁ܽ൛ ଵܲ,ଶൟ൯ଶ + ଵ଺௥గఉ೓(ଵିఈ)ଶగఉ೓ାଶ ൰   (16) 

ସܲ = ସ௥గఉ೓(ଵିఈ)(ଶగఉ೓ାଶ)௉య                (17) 

At a βh of 0.5, Fig. 10 plots r and the magnitudes of P3 and 
P4 versus βres-max/βres-min. Using this figure, it can be implied 
that: 
a. For 0<r≤1, the minimum limit of βres-max corresponds to 

r=1 and is denoted as βres-a. With a decreasing r, βres-max 
increases untill reaches its maximum limit at r=0. On the 
other hand, for 0>r≥rb, the maximum limit of βres-min 
corresponds to rmin = rb. With an increasing r, βres-min 
decreases till it reaches its minimum limit at r=0. At r=0, 
both βres-max and βres-min have the same value which is 
denoted as βres-cr and expressed in (18) by substituting 
r=0 into (15). It is shown from Figs. 8 and 9 that 
decreasing βh causes a movement to the right for the 
poles P1,2 on the unit circle. This in turn increases 
real{P1,2}. Accordingly, from (18), βres-cr decrease as βh 

decreases. Then the maximum value of βres-cr corresponds 
to βh=0.5, where real{P1,2} is determined from Figs. 7(a) 
or 7(b) as -0.111. By substituting this value into (18), the 
maximum value of βres-cr is determined as 0.268. 
Therefore, for 0<r≤1, Fnew(z) can only be stable for 
resonant frequencies less than 0.268ωs. ߚ௥௘௦ି௖௥ = ୡ୭ୱషభ൫ோ௘௔௟൛௉భ,మൟ൯ଶగ           (18) 

b. For 0>r≥rb, both rb and βres-b correspond to one pole of P3 
or P4 at (-1,0). Thus, rb and βres-b can be determined from 
Fig. 10 by locating their values at the unity magnitudes 
of P3 or P4. βres-high does not correspond to the resonant 
poles at P1,2. It only corresponds to one pole of P3 or P4 
at (-1,0). Therefore, it cannot be determined from Fig. 10. 
However, at high values of r in its second region, the 
non-resonant poles track entirely inside the unit circle 
over the entire range of βres as shown in Fig. 9 (e.g. the 
non-resonant poles track entirely inside the unit circle for 
r of -0.1 and -0.2). Hence, the stable range of Fnew(z) can 
be extended to a βres-high of 0.45 (the maximum 
considered limit of βres) using high values of r in its 
second region. 

Using Fig. 10, at a constant βh, the stable regions of Fnew(z) 
can be re-identified depending on βres as follows: 

1. For βres ≤ βres-a, Fnew(z) can only be stable in the first 
region of r (0<r≤1). 

2. For βres-a<βres<βres-cr, Fnew(z) can only be stable over a 
certain range in the first region of r between 0 and the 
value of r corresponding to βres in Fig. 10. 

3. For βres-cr<βres<βres-b, Fnew(z) can only be stable over a 
certain range in the second region of r between 0 and the 
value of r corresponding to βres in Fig. 10. 

 

V. CONTROL SYSTEM DESIGN 

A. HPF Cutoff Frequency Tuning (βh tuning) 

To tune βh, pole maps of Fnew(z) are plotted with sweeping 
βh for different values of βres in two identified regions of r: 
• First region; 0<r≤1, pole maps are plotted in Figs. 11(a), 

(b) and (c) for three values of r at 0.2, 0.5 and 0.8, 
respectively. In each figure, three βres values of 0.17, 0.2 
and 0.24 are considered (these values are less than 
βres-cr=0.268 since above this value, a positive r cannot 
be used for the stability of Fnew(z)). By increasing βh, the 
resonant poles may track entirely outside or inside the 
unit circle or they may initially track outside the unit 
circle before tracking inside the unit circle with an 
increasing βh. To ensure the stability of Fnew(z), high βh  

 
 

ܨ݊ (ݖ)ݓ݁ = ௭షభீ೔೒(௭)ଵି௭షభீೌ೏(௭)ீ೔೒(௭) = ೞ்൫௅೔ା௅೒൯ ∙ (௭ାఠೌ೏)ቀ(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)ቁ(௭ିଵ)൤௭(௭ାఠೌ೏)(௭మିଶ௭ ௖௢௦(ఋ)ାଵ)ି రഏೝഁ೓మഏഁ೓శమ൫(ଵିఈ)௭మିଶ(௖௢௦(ఋ)ିఈ)௭ା(ଵିఈ)൯൨     (13)
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Fig. 11. Pole maps of Fnew(z) with sweeping βh at different βres and different values of r in the first region (0<r≤1): (a) r=0.2; (b) 
r=0.5; (c) r=0.8. 
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Fig. 12. Pole maps of Fnew(z) with sweeping βh at different βres and different values of r in the second region (0>r≥rb): (a) r=-0.2; (b) 
r=-0.4; (c) r=-0.6. 
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Fig. 13. HPF gain factor (r) along with |P3| 
and |P4| versus βres-max at βh =0.4. 
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Fig. 14. At βh =0.25: (a) Pole map of Fnew(z); (b) HPF gain factor (r) along with |P3| 
and |P4| versus βres-min. 

 
 

should be adopted. Theoretically, βh can be extended to 
0.5. However, such a value can deteriorate the 
discretization process. A value of βh=0.4 is adopted. At 
this value, βres-cr and βres-a are determined by plotting the 
pole map of Fnew(z) with sweeping βres at any constant 
value of r (any of the pole maps in Fig. 8(a) or Fig. 9(a) 
can be used). From these figures, real{P1,2} is 
determined to be -0.0562. Using (15), (16) and (17), Fig. 
13 plots r along with the magnitudes of P3 and P4 versus 
βres-max/βres-min in the first region of r. From this figure, 
βres-a and βres-cr are determined to be 0.188 and 0.259, 
respectively. Then the first and the second regions of βres 

at βh=0.4 are identified since βres ≤ 0.188 and 
0.188<βres<0.259, respectively. 

• Second region; 0>r≥rb, pole maps of Fnew(z) are plotted 
in Figs. 12 (a), (b) and (c) for values of r at -0.2, -0.4 
and -0.6, respectively. Three βres values of 0.3, 0.34 and 
0.38 are considered. By increasing βh, the resonant poles 
may track entirely inside the unit circle or they may 
initially track inside the unit circle before tracking 
outside the unit circle with an increasing βh. From these 
pole maps, using a medium value for βh (0.25) is a good 
tradeoff to ensure the stability of Fnew(z). At this value, 
βres-cr and βres-b can be determined by plotting the pole 
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map of Fnew(z) with sweeping βres at any value of r (r=1 
is used) as shown in Fig. 14(a), where real{P1,2} is 
determined as 0.0653. Using (15), (16) and (17), Fig. 14 
(b) plots r and the magnitudes of P3 and P4 versus 
βres-max/βres-min in the second region of r. From this figure, 
βres-cr and βres-b are determined as 0.239 and 0.395, 
respectively. In addition, rb is determined as -0.875. 
Then the third region of βres at βh=0.25 is identified as 
0.239<βres<0.395. Note that, as indicated previously, for 
values of 0.395<βres<0.45, higher values of r in the 
second region have to be adopted to stabilize Fnew(z) (e.g. 
-0.1 and -0.2). 

• If βres is between 0.239 (βres-cr at βh =0.25) and 0.259 
(βres-cr at βh =0.4), a βh of either 0.25 or 0.4 with the 
corresponding regions of r can be used. 

B. Control Parameters Design 

The design objectives for the overall system are: 
1. To ensure the stability of Fnew(z). 
2. To meet pre-specified limits of the fundamental loop 

gain (Tfo) and crossover frequency (ωc). 
An s-domain model, shown in Fig. 15, is used to design the 

control parameters. An exponential function of ܩௗ(ݏ) =݁ିଵ.ହ௦ ೞ்  is used to model the DSP delay [22]. The PR 
controller (Gc(s)) is expressed here by its proportional gain 
(Kp) for frequencies higher than ωo and by its resonant gain 
(Kr) at ωo. 

Since the crossover frequency should be sufficiently higher 
than ωo, and below both ωres and the adopted values of ωh 
(0.25ωs or 0.4ωs), the loop transfer function (Tloop) at ωc can 
be approximated using trigonometry as in (19), where Ac and 
θc are expressed in (20). Then the loop gain at ωc can be 
expressed as in (21). Then Kp can be determined as in (22). 

௟ܶ௢௢௣(݆߱௖) = ௣ܭ ݁ି௝ଵ.ହఠ೎ ೞ்݆߱௖(ܮ௜ + ௚)(1ܮ − ௝ଵ.ହఠ೎ି݁ݎ ೞ்) 

= ௣ܭ ௘షೕభ.ఱഘ೎೅ೞ௝ఠ೎൫௅೔ା௅೒൯஺೎௘ೕഇ೎            (19) 

௖ܣ = ඥ1 + ଶݎ − ݎ2 cos(1.5 ௦ܶ߱௖) 
   (20)

௖ߠ               = sinିଵ ௥ ୱ୧୬(ଵ.ହఠ೎ ೞ்)஺  
 ห ௟ܶ௢௢௣ିௗ(݆߱௖)ห = ௄೛ఠ೎൫௅೔ା௅೒൯஺೎ = ௣ܭ (21)        1 = ߱௖൫ܮ௜ +   ௖            (22)ܣ௚൯ܮ

Similarly, the loop gain at ωo is approximated in dB in (23). 
Then Kr can be determined using (24).         

௙ܶ௢ = 20 logଵ଴ ௄ೝఠ೚൫௅೔ା௅೒൯஺೚         (23) 

௥ܭ = ߱௢൫ܮ௜ + ௢ܣ௚൯ܮ ∙ 10೅೑೚మబ           (24) 
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Fig. 15. Equivalent s-domain model. 
 

 
Inputs & Specifications(βres, Tfo, ωc)

Isβres  ≥ 0.395
?

Use ωh = 0.4
(real{P1,2} = -0.0562)

Use ωh = 0.25
(real{P1,2} = -0.0653)

plot r versus βres-max
(Use equation (15))

Is βres ≤ 0.259
?

Is βres ≤ 0.188
?

plot r versus βres-min
(Use equation (15))

Range of r is
0 < r ≤ 1

Range of r is
-0.2 ≤ r < 0

Determine rmax atβres-max =βres Determine rmin atβres-min =βres
Range of r is
0 < r ≤ rmax

Range of r is
rmin ≤  r < 0 

plot the pole map of Tclosed for the range of r
(Use equation (27))

Select the value for r corresponding to the farthest poles inside the unit circle

Determine Kp and Kr 
(Use equations (22) and (24))

Yes No

Yes Yes

No No

 
Fig. 16. Design flow for the control parameters. 

 
 

where: ܣ௢ = ඥ1 + ଶݎ − ݎ2 cos(1.5 ௦ܶ߱௢)        (25) 

By substituting (22) and (24) into (8), Gc(z) is expressed in 
terms of r and the pre-specified quantities as in (26). 

(ݖ)௖ܩ = ߱௖൫ܮ௜ + ௖ܣ௚൯ܮ + ఠ೚൫௅೔ା௅೒൯஺೚∙ଵ଴೅೑೚మబ ∙௦௜௡(ఠ೚ ೞ்)(௭మିଵ)ଶఠ೚(௭మିଶ௭ ௖௢௦(ఠ೚ ೞ்)ାଵ)  (26) 

From Fig. 5, the discrete closed loop transfer function is 
expressed in (27). ௖ܶ௟௢௦௘ௗ(ݖ) = ீ೎(௭)ி೙೐ೢ(௭)ଵାீ೎(௭)ி೙೐ೢ(௭)         (27) 

Using the above-addressed expressions, Fig. 16 shows the 
design flow of the control parameters. 

 

VI. NUMERICAL AND EXPERIMENTAL 
VERIFICATION 

A. Numerical Example 

Table I presents the parameters of the system shown in  
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vg [2000 V/div]
ig [100 A/div]

[20 msec/div]

vg [100 V/div]ig [5 A/div]

[30 msec/div]
(a) (b) 

Fig. 17. Simulation results of the grid voltage (vg) and the current (ig) for βres1=0.146: (a) without AD; (b) with AD. 
 

vg [100 V/div]ig [5 A/div]

[30 msec/div]

vg [100 V/div]ig [5 A/div]

[30 msec/div]
(a) (b) 

Fig. 18. Simulation results of the grid voltage (vg) and the current (ig) for βres2=0.197: (a) without AD; (b) with AD. 
 

vg [100 V/div]ig [5 A/div]

[30 msec/div]

vg [100 V/div]ig [5 A/div]

[30 msec/div]
(a) (b) 

Fig. 19. Simulation results of the grid voltage (vg) and the current (ig) with AD at: (a) βres3=0.296; (b) βres4=0.379. 
 

vg [100 V/div] ig [10 A/div]

[10 msec/div]
vg [100 V/div]

ig [5 A/div]

[10 msec/div]
(a) (b) 

Fig. 20. Experimental measurements of the grid voltage (vg) and the current (ig) for βres1=0.146: (a) without AD; (b) with AD. 
 

vg [100 V/div]

ig [5 A/div]

[4 msec/div]
vg [100 V/div]

ig [5 A/div]

[4 msec/div]
(a) (b) 

Fig. 21. Experimental measurements of the grid voltage (vg) and the current (ig) for βres2=0.197: (a) without AD; (b) with AD. 



1174                        Journal of Power Electronics, Vol. 18, No. 4, July 2018 

 

vg [100 V/div]

ig [5 A/div]

[10 msec/div]
vg [100 V/div]

ig [5 A/div]

[10 msec/div]
(a) (b) 

Fig. 22. Experimental measurements of the grid voltage (vg) and the current (ig) with AD at: (a) βres3=0.296; (b) βres4=0.379. 
 

Fig. 1. The proposed tuning steps are applied to the four 
values of the resonant frequencies ωres1, ωres2, ωres3 and ωres4, 
corresponding to βres of 0.146 (βres1), 0.197 (βres2), 0.296 (βres3) 
and 0.379 (βres4), respectively. Tfo is specified as 65 dB, and ⍵c is specified as the ratio of the corresponding resonant 
frequency as follows: 0.3ωres1, 0.25ωres2, 0.22ωres3 and 
0.18ωres4. 

At the beginning, a value of βh=0.4 is adopted for βres1 and 
βres2. On the other hand, a value of βh=0.25 is adopted for βres3 
and βres4. Then for these values of βh, Figs. 13 and 14(b) plot r 
versus βres-max/βres-min. From Fig. 13, r for βres2 a determined as 
0.83. From Fig. 14 (b), r for βres3 and βres4 are determined as 
-0.48 and -0.84, respectively. To complete the tuning process, 
the pole map of Tclosed(z) is plotted over the corresponding 
stable range of r for each value of βres as follows: 

 0<r≤1 for βres1=0.146 (<0.188). 
 0<r<0.83 for βres2=0.197. 
 0>r>-0.48 for βres3=0.296.  
 0>r>-0.84 for βres4=0.379. 

These pole maps are not shown here. The values of r 
corresponding to the farthest closed loop poles inside the unit 
circle are selected as 0.24, 0.16, -0.12 and -0.18 for βres1, βres2, 
βres3 and βres4, respectively. Finally, Kp and Kr are determined 
from (22) and (24), respectively. Table II lists the control 
parameters along with the results of the experimental study 
introduced below. 

B. Simulation Results 

For the system shown in Fig. 1, simulation work is carried 
out in the PSIM environment using the parameters listed in 
Table I. Discrete models for the active damper and the PR 
controller are constructed using PSIM digital control modules. 
Unipolar PWM is adopted for the inverter. To verify the 
proposed approach, step changes in the reference current are 
carried out twice (from a half to the rated current and back). 
Figs. 17, 18 and 19 show simulation waveforms of the grid 
voltage and grid current using the designed parameters listed 
in Table II at the different resonant frequencies. 

C. Experimental Results 

A prototype single phase inverter was connected, using an 
LCL filter, to an AC source for grid emulation. The control  

TABLE I 
SYSTEM PARAMETERS 

Symbol Quantity Value P Rated power 1 kw Vg Grid voltage 120 V Fo Grid Frequency 50 Hz Vdc DC Voltage 220 V Li Inverter side 
inductance 

2.75 mH Lg Grid side inductance 1.2 mH C Capacitance 22.2 µF, 12.2 µF, 5.4 µF, and 3.3 
µF Fsw Switching Frequency 8 kHz Fs Sampling Frequency 8 kHz 

 

scheme was implemented using a C6713-A DSP development 
board. A step change in the reference current was carried out 
to verify the transient characteristics. Experimental investigations 
have been conducted using the parameters listed in Table II at 
different resonant frequencies. 

For ωres1 (< ߱௦ 6⁄ ), an active damper (AD) is mandatory to 
maintain stability. This is confirmed by Fig. 20(a) where a 
high oscillatory current is produced without using AD. On the 
other hand, when using AD, Fig. 20(b) shows that the 
stability is restored. These waveforms indicate clearly the 
stabilization effect of the active damping loop for resonant 
frequencies of less than one-sixth of the control frequency. 

For resonant frequencies greater than one-sixth of the 
control frequency, AD is not mandatory for system stability. 
However, the stability can be worse with variations in grid 
side inductance. Moreover, oscillatory resonant currents can 
be generated without using resonance damping. This is 
confirmed in Fig. 21(a), where the current waveforms at ωres2 
are shown without using AD. In this case, oscillatory 
resonant currents are generated at the stepping up of the 
reference current. Much worse oscillations can be generated 
if the grid voltage contains harmonic components around the 
resonant frequency. On the other hand, the waveforms when 
using AD are shown Fig. 21(b). It can be realized that the 
mitigation effect is introduced by the AD in this case.  
Finally, Figs. 22(a) and 22(b) show the waveforms when 
using AD for ωres3 and ωres4, respectively. 

At steady state conditions, Table II presents the measured  
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TABLE II 
DESIGNED PARAMETERS AND EXPERIMENTAL RESULTS 

C 
(µF) 

βres 
Designed Controller Experimental Results

βh r Kp Kr Ig1 Ess PF

22.2 0.146 0.4 0.24 6.84 1678 8 0.04 0.999

12.2 0.197 0.4 0.16 8.41 1854 8.01 0.039 0.999

5.4 0.296 0.25 -0.1 14.01 2427 7.98 0.042 0.999

3.3 0.379 0.25 -0.18 15.56 2600 8.03 0.037 0.999

 
TABLE III 

THD OF THE CURRENT WAVEFORMS 

C (µF) βres Without AD With AD 

22.2 0.146 – 3.32% 

12.2 0.197 3.02 % 3.09% 

5.4 0.296 – 2.27% 

3.3 0.379 – 2.7% 

 

fundamental current component (ܫ௚ଵ), the power factor (PF), 

and the steady state error൫ܧ௦௦ = ห൫ܫ௥௘௙ − ௚ଵ൯ܫ ௥௘௙ൗܫ ห × 100൯. 
These results reflect satisfactory transient and steady state 
behavior along with resonance damping over the entire 
possible range of resonant frequencies. 

The total harmonic distortion of the measured grid current 
(THDi) has been estimated at the rated conditions as ratio 
(in %) of the harmonic current (of the orders 2 to 40) to the 
fundamental current as listed in table III. For values of the 
resonant frequencies, it is shown that THDi is less than 5%. 
For ωres2, it is shown that adding the AD loop increases the 
THDi value from 3.02% to 3.09%. This indicates the 
negligible effect of the AD loop on the THDi of the grid 
current. 

 

VII. CONCLUSIONS 

This paper investigates active damping of LCL filter 
resonance using HPF of the grid current feedback. A new 
expression for this HPF, in terms of the filter components, 
has been derived. This expression facilitates a general 
stability study of the active damped filter. Through discrete 
time domain investigation of the active damped filter, three 
regions of resonant frequencies have been identified for 
stable open loop behavior at a certain HPF cutoff frequency. 
These regions cover a wide range of resonant frequencies up 
to 0.45 of the sampling frequency. Moreover, straightforward 
design steps for both the HPF and the fundamental current 
regulator have been proposed. A numerical example and 
experimental work have been introduced. The results show 
that good steady state and dynamic performance along with 
resonance damping can be obtained over a wide range of 
resonant frequencies using the proposed co-design steps of 
the control parameters. 
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