• Title/Summary/Keyword: active compound

Search Result 968, Processing Time 0.025 seconds

Anti-multi drug resistant pathogen activity of siderochelin A, produced by a novel Amycolatopsis sp. KCTC 29142 (Amycolatopsis sp. KCTC 29142로부터 유래된 siderochelin A의 다제 내성 균주에 대한 항균활성)

  • Lee, Dong-Ryung;Cheng, Jinhua;Lee, Sung-Kwon;Hong, Hee-Jeon;Song, Jaekyeong;Yang, Seung Hwan;Suh, Joo-Won
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.327-335
    • /
    • 2016
  • A novel Amycolatopsis strain KCTC 29142 was isolated and characterized based on the polyphasic taxonomic analysis including morphological observation, phylogenetic analysis, physiological and chemotaxonomic characteristics. The ethyl acetate extract of strain KCTC 29142 culture broth showed strong antibacterial activity and the active compound was identified as siderochelin A, a ferrous-ion chelating compound. In this study, siderochelin A showed good activity against multi-drug resistant pathogens, including Acinetobacter baumanii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and Escherichia coli (E. coli). The minimum inhibitory activity against clinical isolates was also determined.

Isolation and Structural Determination of Free Radical Scavenging Compounds from Korean Fermented Red Pepper Paste (Kochujang)

  • Chung, Jin-Ho;Shin, Heung-Chule;Cho, Jeong-Yong;Kang, Seong-Koo;Lee, Hyoung-Jae;Shin, Soo-Cheol;Park, Keun-Hyung;Moon, Jae-Hak
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.463-470
    • /
    • 2009
  • Sixteen antioxidative active compounds isolated from the EtOAc layer of MeOH extracts of kochujang, Korean fermented red pepper paste, were structurally elucidated as fumaric acid, methyl succinate, succinic acid furan-2-yl ester methyl ester (gochujangate, a novel compound), 2-hydroxy-3-phenylpropanoic acid, 3,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 6,7-dihydroxy-2H-chromen-2-one (esculetin), caffeic acid, cis-p-coumaric acid, trans-p-coumaric acid, daidzin, genistin, apigenin 7-O-$\beta$-D-apiofuranosyl($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, apigenin 7-O-$\beta$-Dglucopyranoside, and quercetin 3-O-$\alpha$-L-rhamnopyranoside by mass spectrometry (MS) and nuclear magnetic resonance (NMR) experiments. These compounds were analyzed for the first time as antioxidants from kochujang.

Anti-inflammatory Effects of 8α-hydroxy pinoresinol isolated from Nardostachys jatamansi on Lipopolysaccharide-induced Inflammatory Response in RAW 264.7 Cells. (LPS로 유도된 RAW 264.7 세포의 염증반응에서 감송향(甘松香)에서 추출한 8α-hydroxy pinoresinol의 항염증 효과)

  • Choi, Sun Bok;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2016
  • Objectives : Nardostachys jatamansi (NJ) is a medicinal herb that has been reported in various traditional systems of medicine for its use in antispasmodic, a digestive stimulant, skin diseases. Previous studies have already reported that NJ effectively protects against inflammation. However, the active compound in NJ is unknown. Therefore, in the present study, we analyzed effects of a compound, 8α-hydroxy pinoresinol (HP), isolated from NJ against lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells.Methods : To examine the anti-inflammatory effect of HP against LPS, intraperitoneally pre-treat the HP (100, 200, 500 and 1,000 nM) 1 h prior to LPS challenges. LPS was stimulated with 500 ng/ml in RAW 264.7 cells. To identify the anti-inflammatory effect of HP, we measured inflammatory mediators such as inducible nitric oxide synthase (iNOS) and its derivative nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2). Also we evaluated molecular mechanisms including mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) activation by western blot.Results : The HP inhibited production of inflammatory mediators, such as iNOS and its derivative NO, COX-2 and PGE2 in LPS- induced inflammationin RAW 264.7 cells. Additionally, HP also inhibited activation of p38 pathway signaling but not extracellularsignal-regulatedkinase (ERK), c-jun NH2-terminal kinase (JNK), and NF-κB.Conclusion : Our results suggest that HP has anti-inflammatory functions through the dephosphorylation of p38 and HP can provide beneficial strategy for prevention and therapy of inflammation.

Structural investigation of ginsenoside Rf with PPARγ major transcriptional factor of adipogenesis and its impact on adipocyte

  • Siraj, Fayeza Md;Natarajan, Sathishkumar;Huq, Md Amdadul;Kim, Yeon Ju;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Background: Adipocytes, which are the main cellular component of adipose tissue, are the building blocks of obesity. The nuclear hormone receptor $PPAR{\gamma}$ is a major regulator of adipocyte differentiation and development. Obesity, which is one of the most dangerous yet silent diseases of all time, is fast becoming a critical area of research focus. Methods: In this study, we initially aimed to investigate whether the ginsenoside Rf, a compound that is only present in Panax ginseng Meyer, interacts with $PPAR{\gamma}$ by molecular docking simulations. After we performed the docking simulation the result has been analyzed with several different software programs, including Discovery Studio, Pymol, Chimera, Ligplus, and Pose View. All of the programs identified the same mechanism of interaction between $PPAR{\gamma}$ and Rf, at the same active site. To determine the drug-like and biological activities of Rf, we calculate its absorption, distribution, metabolism, excretion, and toxic (ADMET) and prediction of activity spectra for substances (PASS) properties. Considering the results obtained from the computational investigations, the focus was on the in vitro experiments. Results: Because the docking simulations predicted the formation of structural bonds between Rf and $PPAR{\gamma}$, we also investigated whether any evidence for these bonds could be observed at the cellular level. These experiments revealed that Rf treatment of 3T3-L1 adipocytes downregulated the expression levels of $PPAR{\gamma}$ and perilipin, and also decreased the amount of lipid accumulated at different doses. Conclusion: The ginsenoside Rf appears to be promising compound that could prove useful in antiobesity treatments.

Anti-allergic effects of Perilla frutescens var. acuta Kudo 30% ethanol extract powder

  • Oh, Hyun-A;Kim, Sung-Hoon;Cha, Wung-Seok;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.173-183
    • /
    • 2010
  • Perilla frutescens var. acuta Kudo (PF) is a traditional Korean medicinal herb for allergic reaction regulation. In the present study, we investigated the effect of 30% ethanol extract powder of PF (EPPF) and rosmarinic acid (RA), the active compound of EPPF on various allergic reactions using in vivo and in vitro models. EPPF and RA significantly inhibited compound 48/48-induced systemic anaphylactic reaction and histamine release (P < 0.05). In addition, EPPF and RA significantly inhibited passive cutaneous anaphylaxis (PCA) in a dose-dependent manner (P < 0.05). These effects were stronger than those of disodium cromoglycate, the reference drug tested. EPPF and RA also significantly inhibited production of inflammatory cytokines, tumor necrosis factor-a interleukin (IL)-6, and vascular endothelial growth factor on the PCA reaction and phorbol 12-myristate 13-acetate and calcium ionophore A23187-stimulated human mast cell line, HMC-1 cells (P < 0.05). Moreover, EPPF and RA showed an inhibitory effect on lipopolysaccharide (LPS)-induced IL-4 production from whole spleen cells. Finally, EPPF and RA significantly decreased IL-4-dependent IgE production by LPS-stimulated whole spleen cells (P < 0.05). In conclusion, these results indicate that EPPF has potent anti-allergic activities.

Synthesis of (5R,8R)-2-(3,8-Dimethyl-2-oxo-1,2,4,5,6,7,8,8α-octahydroazulen-5-yl) Acrylic Acid (Rupestonic Acid) Amide Derivatives and in vitro Inhibitive Activities against Influenza A3,B and Herpes Simplex Type 1 and 2 Virus

  • Yong, Jian-Ping;Lv, Qiao-Ying;Aisa, Haji Akber
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.435-440
    • /
    • 2009
  • 19 Aromatic ring and L-amino acid ester contained rupestonic acid amide derivatives 2a~2l, 3a~3g were synthesized and preliminarily evaluated in vitro against influenza virus $A_3$,B and herpes simplex virus type 1 (HSV-1), 2(HSV-2) by the national center for drug screening of China. The rusults showed that 2i possessed the highest inhibition against both influenza virus $A_3\;(TC_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;19.2\;{\mu}$mol/L, SI = 6.3) and B (T$C_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;29.9\;{\mu}$mol/L, SI = 4.0); 2g was more active against influenza $A_3$ virus at very low cytotoxicity ($TC_{50}\;>\;2092.1\;{\mu}mol/L,\;IC_{50}=\;143.7\;{\mu}mol/L,$ SI > 14.6) than the parent compound; Compounds 2b, 2c, 2f showed higher activities both against HSV-1 and HSV-2 than that of the parent compound, and 2f was the most potent inhibitor of HSV-1 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;11.3\;{\mu}mol$/L, SI = 17.7 ) and HSV-2 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;20.7\;{\mu}mol$/L , SI = 9.7).

Color Alteration and Acaricidal Activity of Juglone Isolated from Caesalpinia sappan Heartwoods Against Dermatophagoides spp.

  • Lee, Chi-Hoon;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1591-1596
    • /
    • 2006
  • Acaricidal effects of materials derived from Caesalpinia sappan heartwoods against Dermatophagoides farinae and D. pteronyssinus were assessed and compared with those evidenced by commercial benzyl benzoate and DEET. The observed responses varied according to dosage and mite species. The $LD_{50}$ values of the methanol extracts derived from C. sappan heartwoods were 6.13 and $5.44{\mu}g/cm^3$ against D. farinae and D. pteronyssinus, respectively. Furthermore, the ethyl acetate fraction derived from the methanol extract was approximately 8.71 more toxic than DEET against D. farinae, and 4.73 times more toxic against D. pteronyssinus. The biologically active constituent from the ethyl acetate fraction of C. sappan heartwood extract was purified via silica gel chromatography and high-performance liquid chromatography. The structure of the acaricidal component was analyzed by $GC-MS,\;^1H-NMR,\;^{13}C-NMR,\;^1H-^{13}C\;COSY-NMR$, and DEPT-NMR spectroscopy, and identified as juglone (5-hydroxy-l,4-naphthoquinone). Based on the $LD_{50}$ values of juglone and its derivatives, the most toxic compound against D. farinae was juglone ($0.076{\mu}g/cm^3$), followed by benzyl benzoate ($9.143{\mu}g/cm^3$) and 2methyl-l,4-naphthoquinone ($40.0{\mu}g/cm^3$). These results indicate that the acaricidal activity of C. sappan heartwoods is likely to be the result of the effects of juglone. Additionally, juglone treatment was shown to effect a change in the color of the cuticles of house dust mites, from colorless-transparent to dark brownish-black. Accordingly, as a naturally occurring acaricidal agent, C. sappan heartwood-derived juglone should prove to be quite 'useful as a potential control agent, lead compound, and house dust mite indicator.

A useful material isolation from the Bombycis corpus (Beauveria bassiana) growing of the silkworm, Bombyx mori L. (백강잠(Bombysis corpus)으로부터 유용물질 분리)

  • 정이연;남성희;홍인표;유승헌;권학철;이강노
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • This study was carried out to investigate active constituents of Bombysis corpus on the neurite outgrowth from PC 12 cells led to isolate three new and a known sphingolipids from the n-hexane soluble portion and five amines from the butanol soluble portion of its methanol extract. On the basis of spectroscopic data, their structures have been elucidated as (4E,6E,2S,3R)-2-N-eicosanoyl-4,6-tetradecasphingadienine, (4E,2S,3R)-2-N-eicosanoyl-4-tetradecasphingenine,(4E,6E,2S,3R)-2-N-docosanoyl-4,6-tetradecasphingadienine,(4E,6E,2S,3R)-2-N-docosanoyl-4,6-tetradecasphingadienine,(4E,2S,3R)-2-N-octadecanoyl-4-tetradecasphingenine, 1,7-dimethyl-xanthine, uracil, urea, betaine and tyrosine, respectively. The neurite outgrowth activities of these compounds were examined in PC12 cells by measuring the length of neurites. These compounds promoted neurite outgrowth in PC12 cells significantly.

Isolation and Identification of Succinic Semialdehyde Dehydrogenase Inhibitory Compound from the Rhizome of Gastrodia elata Blume

  • Baek, Nam-In;Choi, Soo-Young;Park, Jin-Kyu;Cho, Sung-Woo;Ahn, Eun-Mi;Jeon, Seong-Gyu;Lee, Byung-Ryong;Bahn, Jae-Hoon;Kim, Yong-Kyu;Shon, Il-Hwan
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.219-224
    • /
    • 1999
  • In our search for the anticonvulsant consitutent of Gastrodia elata repeated column chromatographies guided by activity assay led to isolation of an active compound, which was identified as gastrodin on the basis of spectral data. Brain succinic semialdehyde dehydrogenase (SSADH) was inactivated by preincubation with gastrodin in a time-dependent manner and the reaction was monitored by absorption and fluorescene spectroscopic methods. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $1.2{\times}10^{3} M^{-1} min^{-1}$. The time course of the reaction was significantly affected by the coenzyme NAD^{+}$, which affected complete protection against the loss of the catalytic activity, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme. It is postulated that the gastrodin is able to elevate the neurotransmitter GABA levels in central nervous system by inhibitory action on one of the GABA degradative enzymes, SSADH.

  • PDF

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.