• Title/Summary/Keyword: active clamp

Search Result 194, Processing Time 0.045 seconds

Low Voltage Active-Clamp Forward Converter with MOSFET Synchronous Rectification (MOSFET 동기정류를 이용한 저전압 능동 클램프 Forward 컨버터에 관한 연구)

  • Kim, Hee-Jun;Ji, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.110-113
    • /
    • 1993
  • The MOSFET synchronous rectification in the Active-Clamp Forward converter is presented. The Active-Clamp Forward converter has little dead time during the off time of the main switch and it is suitable for the MOSFET synchronous rectification comparing to the other Forward converter topologics. Using the MOSFET synchronous rectification on the Active-Clamp Forward converter with 3.3[V] output and 500[kHz] switching frequency, the improvement of efficiency is achieved comparing with the conventional Schottky barrier diode rectification.

  • PDF

Study of a SEPIC-input Self-driven Active Clamp ZVS Converter

  • Cao, Guo-En;Kim, Hee-Jun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.202-215
    • /
    • 2013
  • This paper proposes a SEPIC-input, self-driven, active clamp ZVS converter, where an auxiliary winding and a RC delay circuit are employed to drive the active clamp switch and to achieve asymmetrical duty control without any other extra circuits. Based on the fixed dead time and the resonance between capacitors and inductors, both the main switch and the auxiliary switch can rule the ZVS operation. Detailed operation modes are presented to illustrate the self-driven and ZVS principles. Furthermore, an accurate state-space model and the transfer functions of the proposed converter have been presented and analyzed in order to optimize dynamic performance. The model provides efficient prediction of converter operations. Experimental results, based on a prototype with 80V input and 15V/20A output, are discussed to verify the transient and steady performance of the proposed converter.

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

An Active Clamp High Step-Up Boost Converter with a Coupled Inductor

  • Luo, Quanming;Zhang, Yang;Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • An active clamp high step-up boost converter with a coupled inductor is proposed in this paper. In the proposed strategy, a coupled inductor is adopted to achieve a high voltage gain. The clamp circuit is included to achieve the zero-voltage-switching (ZVS) condition for both the main and clamp switches. A rectifier composed of a capacitor and a diode is added to reduce the voltage stress of the output rectifier diode. As a result, diodes with a low reverse-recovery time and forward voltage-drop can be utilized. Since the voltage stresses of the main and clamp switches are far below the output voltage, low-voltage-rated MOSFETs can be adopted to reduce conduction losses. Moreover, the reverse-recovery losses of the diodes are reduced due to the inherent leakage inductance of the coupled inductor. Therefore, high efficiency can be expected. Firstly, the derivation of the proposed converter is given and the operation analysis is described. Then, a steady-state performance analysis of the proposed converter is analyzed in detail. Finally, a 250 W prototype is built to verify the analysis. The measured maximum efficiency of the prototype is 95%.

Zero Voltage and Zero Current Switching Full Bridge DC-DC Converter Using Novel Secondary Active Clamp (새로운 2차측 능동 클램프회로의 영전압 영전류 스위칭 Full Bridge DC-DC 컨버터)

  • Kim, Byung-Chul;Kim, Hyung-Gon;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.13-15
    • /
    • 1999
  • The zero voltage and zero current switching(ZVZCS) full bridge (FB) PWM converter using secondary active clamp is characterized by high efficiency, good ZVZCS characteristic, simple topology and low cost. But at the period for discharge of the secondary clamp capacitor, peak pulses and ringing pulse occur in rectified secondary side of the converter. In this paper, a novel secondary active clamp circuit for the ZVZCS FB PWM converter is proposed and a 50 kHz, 500 W prototype converter was experimented for verification of the converter characteristics. It was verified that high voltage peak pulses and ringing pulse on secondary rectified waveforms of the converter are decreased effectively.

  • PDF

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-Su;Ji, Sang-Keun;Ryu, Dong-Kyun;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

A Study on the output ripple reduction of Active-Clamp Forward Converter (액티브 클램프 포워드 컨버터의 출력 리플 저감에 관한 연구)

  • Jung, Jae-Yeop;Kim, Yong;Bae, Jin-Yong;Kwon, Soon-Do;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.963_964
    • /
    • 2009
  • This paper presents an output ripple reduction of Active-Clamp Forward Converter, which is mainly composed of interleaving two active-clamping forward converters. By interleaving, Output ripple is reduced. The leakage inductance of the transformer or an additional resonant inductance is employed to achieve ZVS during the dead times. The duty cycles are not limited to be equal and within 50%. The complementary switching and the resulted interleaved output inductor currents diminish the current ripple in output capacitors. Accordingly, the smaller output chokes and capacitors lower the converter volume and increase the power density. Detailed analysis of this ouput reduction of Active-Clamp Forward Converter is described.

  • PDF

Active Cell Equalizer by a Forward Converter with Active Clamp (능동 클램프를 이용한 포워드 컨버터 기반 능동형 셀 밸런싱 회로)

  • Bui, Thuc minh;Jeon, Seonwoo;Bae, Sungwoo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.31-32
    • /
    • 2015
  • 본 논문은 FAC (Forward converter Active Clamp) 회로를 통해 변압기 자화인덕턴스에 저장된 에너지를 셀 밸런싱에 재사용하는 Active Clamp Forward converter 기반 셀 밸런싱 회로를 제안한다. 제안 회로는 클램프 커패시터의 충전 균형으로 스위치를 전압 스파이크로부터 보호하고 전력손실을 초래할 수 있는 변압기의 자기포화를 방지할 수 있다. 제안한 셀 밸런싱 회로는 RCD 포워드 셀 밸런싱 컨버터 보다 더 높은 전력 전달 효율과 낮은 전압 스트레스를 갖는다. 제안한 액티브 셀 밸런싱 회로는 동시에 모든 셀이 균등화 되도록 작동하므로, 셀밸런싱 시간이 짧다. 본 논문에서는 제안 회로의 배터리 상태에 따른 제어모드를 설명하고 회로의 타당성 검증을 위해 Powersim 사(社)의 Psim 시뮬레이션 연구를 수행하였다.

  • PDF

A Study on PFC of Active Clamp ZVS Flyback Converter (능동 클램프 ZVS 플라이백 컨버터의 역률개선에 관한 연구)

  • 최태영;류동균;이우석;안정준;원충연;김수석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.49-57
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flybark converter by adding two method PFC (Power Factor Correction) circuit-two-stage and single-stage. The addition of active clamp circuit also provide a mechanism fur achieving ZVS of both the primary and auxiliary switches. ZVS also limits the turn off di/dt of the output rectifier, reducing rectifier switching loss and switching noise, due to diode reverse recovery. As a results, the proposed converters have characteristics of the reduced switching noise and high efficiency in comparison to conventional flyback converter. The simulation and experimental results show that the proposed converters improve the input PF of 300[W] ZVS flyback converter by adding single-stage two-stage PFC circuit.

  • PDF