• Title/Summary/Keyword: activator

Search Result 1,695, Processing Time 0.035 seconds

Relationship between the Regulator of Calcineurin 1-4 Isoform and In Vitro Osteoclast Differentiation (Regulator of calcineurin 1-4과 파골세포 분화의 관련성)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2015
  • Regulator of calcineurin 1 (RCAN1) is an endogenous calcineurin inhibitor that plays an important role in the pathogenesis of diseases related to the calcineurin-NFATc1 signaling pathway. The RCAN1-4 isoform is subject to NFATc1-dependent regulation. During receptor activator of nuclear factor kappa-B ligand (RANKL)-stimulated osteoclastogenesis, the calcineurin-NFATc1 pathway is critical. Because there is little information available on the role of RCAN1 in osteoclast differentiation, this study investigated whether changes in RCAN1 expression are related to the calcineurin-NFATc1 pathway and osteoclast differentiation. Mouse bone marrow monocytes (BMMs) were treated with 50 ng/ml of RANKL and M-CSF. Expression levels of NFATc1, calcineurin, and RCAN1 isoforms were determined using RT-PCR and Western blotting. Osteoclast differentiation was examined using tartrate-resistent acid phosphatase (TRAP) staining. To evaluate the effect of RCAN1 overexpression on osteoclastogenesis, cells were transfected with a mouse RCAN1-4 cDNA plasmid. After RANKL stimulation of BMMs, expression of NFATc1 and RCAN1 was increased at the mRNA and protein level, while calcineurin expression was unchanged. When the RCAN1-4 gene construct was transfected, the expression of RCAN1 protein was not increased despite several-fold increases in RCAN1-4 mRNA expression. Regardless of RANKL stimulation, over-expression of RCAN1-4 tended to reduce NFATc1 expression and knock-down of RCAN1 increase it. While BMMs transfected with the RCAN1-4 vector were differentiated into distinct osteoclasts, their phenotypes did not vary from those of mock controls. These results suggest that RCAN1 has a limited effect on the calcineurin-NFATc1 pathway during RANKL-stimulated osteoclast differentiation.

Wnt7b is Upregulated in Macrophages during Thymic Regeneration and Negatively Regulated by RANKL (흰쥐 가슴샘 재생과정 동안 대식세포에서 Wnt 7b의 발현증가 및 RANKL에 의한 발현조절)

  • Kim, Jong-Gab;Kim, Sung-Min;Kim, Bong-Seon;Kim, Jae-Bong;Yoon, Sik;Bae, Soo-Kyung
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.923-930
    • /
    • 2007
  • Thymus can regenerate to its normal mass within 14 days after acute involution induced by cyclophosphamide (CY) in adult rat. Despite the established role of Wnt pathways in the process of thymus development, they have not yet been associated with the regeneration of adult thymus. The purpose of this study was to investigate whether Wnt7b, which is expressed in developing thymic epithelial cells rather than in thymocytes, is modulated during thymic regeneration in adult rat. Here, we show that Wnt7b expression was up-regulated in the regenerating thymus. Cells immunolabeled for the Wnt7b were identified as macrophages. Furthermore, Wnt7b gene expression was decreased by the treatment of receptor activator of NF-kappaB ligand (RANKL). Taken together, our results demonstrate that Wnt7b gene expression was increased in macrophages during thymic regeneration and negatively regulated by RANKL.

Cloning and Characterization of BTG-1 Gene from Pacific Oyster (Crassostrea gigas) (참굴(Crassostrea gigas)의 BTG1 유전자의 특성)

  • Chung, In Young;Oh, Jeong Hwan;Song, Young Hwan
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.398-407
    • /
    • 2017
  • BTG 1 (B-cell translocation gene 1) gene was first identified as a translocation gene in a case of B-cell chronic lympocytic leukemia. BTG1 is a member of the BTG/TOB family with sharing a conserved N-terminal region, which shows anti-proliferation properties and is able to stimulate cell differentiation. In this study, we identified and characterized the pacific oyster Crassostrea gigas BTG1 (cg-BTG1) gene from the gill cDNA library by an Expressed Sequence Tag (EST) analysis and its nucleotide sequence was determined. The cg-BTG1 gene encodes a predicted protein of 182 amino acids with 57% 56% identities to its zebrafish and human counterparts, and is an intron-less gene, which was confirmed by PCR analysis of genomic DNA. Maximal homologies were shown in conserved Box A and B. The deduced amino acid sequence shares high identity with other BTG1 genes of human, rat, mouse and zebrafish. The phylogenic analysis and sequence comparison of cg-BTG1 with other BTG1 were found to be closely related to the BTG1 gene structure. In addition, the predicted promoter region and the different transcription-factor binding site like an activator protein-1 (AP-1) response element involved in negative regulation and serum response element (SRE) were able to be identified by the genomic DNA walking experiment. The quantitative real-time PCR analysis showed that the mRNA of cg-BTG1 gene was expressed in gill, heart, digestive gland, intestine, stomach and mantle. The cg-BTG1 gene was expressed mainly in heart and mantle.

Physiological Activity of Coffee Beans and Roasted Black Beans (Rhynchosia nulubilis) Mixture Extracts for Coffee Alternative Beverage Development

  • Kim, Ae-Jung;Lee, Hankyu;Ko, Hyuk Wan;Ko, Seong Hee;Woo, Nariyah
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.178-185
    • /
    • 2016
  • This study was designed to develop and to qualify a coffee alternative beverage using a mixture of coffee beans and roasted black beans (Rhynchosia nulubilis). Therefore, the total isoflavone content (TIC), total phenol content (TPC), antioxidant activity, anti-inflammatory activity, NFATc1 (Nuclear factor of activated T-cells c1) expression in RANKL (receptor activator of nuclear factor kappa-B ligand)-stimulated RAW264.7 cells and sensory evaluation were measured for 5 different Cb (coffee bean)-RoS (roasted seomoktae) mixture extracts (Cb100RoS0, Cb75RoS25, Cb50RoS50, Cb25RoS75, and Cb0RoS100). Cb0RoS100 had the highest TIC ($516.83{\pm}36.61mg/100g$) and TPC ($18.11{\pm}1.77mg$ TAE/100 g) along with the highest antioxidant activity as measured by DPPH radical scavenging activity ($73.55{\pm}8.11%$) and ABTS radical scavenging activity ($63.27{\pm}7.27%$). Also, Cb0RoS100 showed the highest anti-inflammatory activity as measured by NO production ($13.57{\pm}2.21{\mu}M$) and PGE2 production ($3.25{\pm}0.21ng/mL$). The more the RoS ratio was increased in the mixtures of Cb-RoS, the more the NFATc1 protein expression was decreased in RANKL-stimulated RAW264.7 cells. In case of sensory evaluation, Cb50RoS50 had the highest scores for flavor, delicate flavor and overall quality, which were similar to those in Cb alone (Cb100RoS0). We suggest that the use of RoS replacement instead of Cb in/as a coffee alternative beverage may help to reduce the risk of caffeine-related bone loss and/or bone disease by effectively blocking NFATc1 expression in RANKL-stimulated RAW264.7 cells compared with Cb alone.

Regulation of $Ba^{2+}$-Induced Contraction of Murine Ureteral Smooth Muscle

  • Kim, Young-Chul;Lee, Moo-Yeol;Kim, Wun-Jae;Myung, Soon-Chul;Choi, Woong;Kim, Chan-Hyung;Xu, Wen-Xie;Kim, Seung-Ryul;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.207-213
    • /
    • 2007
  • This study was designed to characterize ureteral smooth muscle motility and also to study the effect of forskolin(FSK) and isoproterenol(ISO) on smooth muscle contractility in murine ureter. High $K^+$(50 mM) produced tonic contraction by $0.17{\pm}0.06mN$(n=19). Neuropeptide and neurotransmitters such as serotonin($5{\mu}M$), histamine($20{\mu}M$), and carbarchol(CCh, $10{\sim}50{\mu}M$) did not produce significant contraction. However, CCh($50{\mu}M$) produced slow phasic contraction in the presence of 25 mM $K^+$. Cyclopiazonic acid(CPA, $10{\mu}M$), SR $Ca^{2+}$-ATPase blocker, produced tonic contraction(0.07 mN). Meanwhile, inhibition of mitochondria by protonophore carbnylcyanide m-chlorophenylhydrazone(CCCP) also produced weak tonic contraction(0.01 mN). The possible involvement of $K^+$ channels was also pursued. Tetraethyl ammonium chloride(TEA, 10 mM), glibenclamide($10{\mu}M$) and quinidine($20{\mu}M$) which are known to block $Ca^{2+}$-activated $K^+$ channels($K_{Ca}$ channel), ATP-sensitive $K^+$ channels($K_{ATP}$) and nonselective $K^+$ channel, respectively, did not elicit any significant effect. However, $Ba^{2+}$($1{\sim}2mM$), blocker of inward rectifier $K^+$ channels($K_{IR}$ channel), produced phasic contraction in a reversible manner, which was blocked by $1{\mu}M$ nicardipine, a blocker of dehydropyridine-sensitive voltage-dependent L-type $Ca^{2+}$ channels($VDCC_L$) in smooth muscle membrane. This $Ba^{2+}$-induced phasic contraction was significantly enhanced by $10{\mu}M$ cyclopiazonic acid(CPA) in the frequency and amplitude. Finally, regulation of $Ba^{2+}$-induced contraction was studied by FSK and ISO which are known as adenylyl cyclase activator and $\beta$-adrenergic receptor agonist, respectively. These drugs significantly suppressed the frequency and amplitude of $Ba^{2+}$-induced contraction(p<0.05). These results suggest that $Ba^{2+}$ produces phasic contraction in murine ureteral smooth muscle which can be regulated by FSK and $\beta$-adrenergic stimulation.

Contradictory Effects of Superoxide and Hydrogen Peroxide on $K_{Ca}3.1$ in Human Endothelial Cells

  • Choi, Shinkyu;Na, Hye-Young;Kim, Ji Aee;Cho, Sung-Eun;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • Reactive oxygen species (ROS) are generated in various cells, including vascular smooth muscle and endothelial cells, and regulate ion channel functions. $K_{Ca}3.1$ plays an important role in endothelial functions. However, the effects of superoxide and hydrogen peroxide radicals on the expression of this ion channel in the endothelium remain unclear. In this study, we examined the effects of ROS donors on $K_{Ca}3.1$ expression and the $K^+$ current in primary cultured human umbilical vein endothelial cells (HUVECs). The hydrogen peroxide donor, tert-butyl hydroperoxide (TBHP), upregulated $K_{Ca}3.1$ expression, while the superoxide donors, xanthine/xanthine oxidase mixture (X/XO) and lysophosphatidylcholine (LPC), downregulated its expression, in a concentration-dependent manner. These ROS donor effects were prevented by antioxidants or superoxide dismustase. Phosphorylated extracellular signal-regulated kinase (pERK) was upregulated by TBHP and downregulated by X/XO. In addition, repressor element-1-silencing transcription factor (REST) was downregulated by TBHP, and upregulated by X/XO. Furthermore, $K_{Ca}3.1$ current, which was activated by clamping cells with 1 ${\mu}M$ $Ca^{2+}$ and applying the $K_{Ca}3.1$ activator 1-ethyl-2-benzimidazolinone, was further augmented by TBHP, and inhibited by X/XO. These effects were prevented by antioxidants. The results suggest that hydrogen peroxide increases $K_{Ca}3.1$ expression by upregulating pERK and downregulating REST, and augments the $K^+$ current. On the other hand, superoxide reduces $K_{Ca}3.1$ expression by downregulating pERK and upregulating REST, and inhibits the $K^+$ current. ROS thereby play a key role in both physiological and pathological processes in endothelial cells by regulating $K_{Ca}3.1$ and endothelial function.

Mechanism of Action of Fatty Alcohol Ethoxylate on Foliar Penetration of Dimethomorph into Cucumber (Fatty Alcohol Ethoxylate에 의해 유도되는 Dimethomorph의 오이 엽면 침투 기작)

  • Yu, Ju-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.127-133
    • /
    • 2008
  • The foliar uptake of dimethomorph into cucumber was assessed by spray application of aqueous dimethomorph solution containing fatty alcohol ethoxylate (FAE) or fatty acid alkyl ester as activator adjuvants. Afterward, the possible mechanism of action of FAE on foliar penetration of active ingredient was suggested by speculating on the effect of lipophile and hydrophile of FAEs. The amount of absorbed dimethomorph induced by polyoxyethylene mono-9-octadecenyl ether (6 moles ethylene oxide, $C_{18=9}E_6$) was linearly related to the concentrations of surfactant as well as dimethomorph in spray solution, suggesting that it is simply a diffusion phenomenon of the solute molecule through a cuticular membrane from leaf surface. Octadecanol attached to FAE was most effective lipophile on the leaf penetration of dimethomorph. And, the more ethylene oxide had the polyoxyethylene chain of FAE up to 20 moles, the higher the uptake rate was. Therefore, the role of lipophile of FAE on dimethomorph penetration to cucumber leaf, probably, is to modify the physico-chemical properties of cuticular membrane to be permeable to dimethomorph, and the polyoxyethylene chain having less than 20 moles ethylene oxide, which is moderately permeable to cuticular membrane by its molar volume, is to let the physically-modified cuticular membrane to be maintained for a longtime.

Anti-Oxidative and Anti-Inflammatory Effects of Malus huphensis, Ophiorrhiza cantonensis, and Psychotria rubra Ethanol Extracts (Malus huphensis, Ophiorrhiza cantonensis, Psychotria rubra 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.275-284
    • /
    • 2014
  • This study was orchestrated with the purpose of uncovering new nutraceutical resources possessing biological activities in the plant kingdom. To fulfill our objective, we analyzed several Chinese plants and selected three possessing powerful anti-oxidative activities. The anti-oxidative and anti-inflammatory effects these three Chinese plants, Malus hupehensis, Ophiorrhiza cantonensis, and Psychotria rubra ethanol extracts were then evaluated. First of all, they possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl, similar with that of ascorbic acid, used as a positive control. Moreover, they inhibited lipopolysaccharide (LPS)- and hydrogen peroxide-induced reactive oxygen species, in a dose-dependent manner, in RAW 264.7 cells. Also, they induced the expression of an anti-oxidative enzyme, heme oxygenase 1, and its upstream transcription factor, nuclear factor-E2-related factor 2. Furthermore, they suppressed LPS-induced nitric oxide (NO) formation, without cytotoxicity. The inhibition of NO formation was the result of the down regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by the three extracts might be the result of modulation by the upstream transcription factors, nuclear factor ${\kappa}B$ and activator protein-1. Taken together, these results indicate that these three Chinese plants possess potent anti-oxidative and anti-inflammatory activities. Therefore, they might be utilized as promising materials in the field of nutraceuticals.

Structural and Luminescent Properties of Gd2WO6:RE3+ (RE = Dy, Sm, Dy/Sm) Phosphors for White Light Emitting Devices (백색광 소자 응용을 위한 Gd2WO6:RE3+ (RE = Dy, Sm, Dy/Sm) 형광체의 구조 및 발광 특성)

  • Park, Giwon;Jung, Jaeyong;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.131-137
    • /
    • 2020
  • A series of Dy3+, Sm3+, and Dy3+/Sm3+ doped Gd2WO6 phosphors were synthesized by the conventional solid-state reaction. The X-ray diffraction patterns revealed that all of the diffraction peaks could be attributed to the monoclinic Gd2WO6 crystal structure, irrespective of the type and the concentration of activator ions. The photoluminescence (PL) excitation spectra of Dy3+-doped Gd2WO6 phosphors contained an intense charge transfer band centered at 302 nm in the range of 240-340 nm and two weak peaks at 351 and 386 nm. Under an excitation wavelength of 302 nm, the PL emission spectra consisted of two strong blue and yellow bands centered at 482 nm and 577 nm. The PL emission spectra of the Sm3+-doped Gd2WO6 phosphors had a series of three peaks centered at 568 nm, 613 nm, and 649 nm, corresponding to the 6G5/26H5/2, 6G5/26H9/2, and 6G5/26H11/2 transitions of Sm3+, respectively. The PL emission spectra of the Dy3+- and Sm3+-codoped Gd2WO6 phosphors showed the blue and yellow emission lines originating from the 4F9/26H15/2 and 4F9/24H13/2 transitions of Dy3+ and reddish-orange and red emission bands due to the 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increased from 1 to 15 mol%, the intensities of two PL spectra emitted by the Dy3+ ions gradually decreased, while those of the three emission bands due to the Sm3+ ions slowly increased, thus producing the color change from white to orange. The CIE color coordinates of Gd2WO6:5 mol% Dy3+, 1 mol% Sm3+ phosphors were (0.406, 0.407), which was located in the warm white light region.

Mechanical Properties and Reaction Products of Activated Slag System Depending on Gypsum Presence and Calcium Carbonate Addition (석고 존재 및 탄산칼슘 첨가에 따른 활성 슬래그의 역학적 성능 및 반응생성물)

  • Jeong, Yeonung;Lim, Gwi Hwan;Park, Su Hyeon;Kim, Joo Hyung;Kim, Tae-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.55-63
    • /
    • 2020
  • This study investigates the mechanical properties and reaction products of activated slag pastes depending on gypsum presence and calcium carbonate addition in terms of compressive strength tests and synchrotron X-ray diffraction. The chemicals of CaO and NaOH are used as activators with different two dosages. The reaction of CaO-activated slag without gypsum just accelerated by addition of calcium carbonate at early ages, but no improvement was observed at later ages. On the other hand, the mechanical properties of CaO-activated slag pastes with gypsum were improved with calcium carbonate, enhancing the stability of ettringite. The variation of mechanical properties of NaOH-activated slag pastes was negligible depending on calcium carbonate addition in case of no gypsum. The addition of calcium carbonate into NaOH-activated slag pastes with gypsum deteriorated its mechanical properties due to the ion competition between CO32- ions and SO32- ions, decreasing crystallinity of reaction products.