Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.2.223

Relationship between the Regulator of Calcineurin 1-4 Isoform and In Vitro Osteoclast Differentiation  

Park, Kyeong-Lok (Department of Dentistry, Kosin University Gospel Hospital)
Publication Information
Journal of Life Science / v.25, no.2, 2015 , pp. 223-230 More about this Journal
Abstract
Regulator of calcineurin 1 (RCAN1) is an endogenous calcineurin inhibitor that plays an important role in the pathogenesis of diseases related to the calcineurin-NFATc1 signaling pathway. The RCAN1-4 isoform is subject to NFATc1-dependent regulation. During receptor activator of nuclear factor kappa-B ligand (RANKL)-stimulated osteoclastogenesis, the calcineurin-NFATc1 pathway is critical. Because there is little information available on the role of RCAN1 in osteoclast differentiation, this study investigated whether changes in RCAN1 expression are related to the calcineurin-NFATc1 pathway and osteoclast differentiation. Mouse bone marrow monocytes (BMMs) were treated with 50 ng/ml of RANKL and M-CSF. Expression levels of NFATc1, calcineurin, and RCAN1 isoforms were determined using RT-PCR and Western blotting. Osteoclast differentiation was examined using tartrate-resistent acid phosphatase (TRAP) staining. To evaluate the effect of RCAN1 overexpression on osteoclastogenesis, cells were transfected with a mouse RCAN1-4 cDNA plasmid. After RANKL stimulation of BMMs, expression of NFATc1 and RCAN1 was increased at the mRNA and protein level, while calcineurin expression was unchanged. When the RCAN1-4 gene construct was transfected, the expression of RCAN1 protein was not increased despite several-fold increases in RCAN1-4 mRNA expression. Regardless of RANKL stimulation, over-expression of RCAN1-4 tended to reduce NFATc1 expression and knock-down of RCAN1 increase it. While BMMs transfected with the RCAN1-4 vector were differentiated into distinct osteoclasts, their phenotypes did not vary from those of mock controls. These results suggest that RCAN1 has a limited effect on the calcineurin-NFATc1 pathway during RANKL-stimulated osteoclast differentiation.
Keywords
Differentiation; NFATc1; osteoclast; RCAN1 (Regulator of calcineurin 1);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bhoiwala, D. L., Kannabiran, V., Hushmendy, S. F., Hahn, A., Heuring, J. M. and Crawford, D. R. 2011. The calcineurin inhibitor RCAN1 is involved in cultured macrophage and in vivo immune response. FEMS Immunol. Med. Microbiol. 61, 103-113.   DOI
2 Blair, H. C., Teitelbaum, S. L., Ghiselli, R. and Gluck, S. 1989. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245, 855-857.   DOI
3 Bush, C. R., Havens, J. M., Necela, B. M., Su, W., Chen, L., Yanagisawa, M., Anastasiadis, P. Z., Guerra, R., Luxon, B. A. and Thompson, E. A. 2007. Functional genomic analysis reveals cross-talk between peroxisome proliferator-activated receptor gamma and calcium signaling in human colorectal cancer cells. J. Biol. Chem. 282, 23387-23401.   DOI
4 Cano, E., Canellada, A., Minami, T., Iglesias, T. and Redondo, J. M. 2005. Depolarization of neural cells induces transcription of the Down syndrome critical region 1 isoform 4 via a calcineurin/nuclear factor of activated T cells-dependent pathway. J. Biol. Chem. 280, 29435-29443.   DOI
5 Corsi, M. M., Ponti, W., Venditti, A., Ferrara, F., Baldo, C., Chiappelli, M. and Licastro, F. 2003. Proapoptotic activated T-cells in the blood of children with Down's syndrome: relationship with dietary antigens and intestinal alterations. Int. J. Tissue React. 25, 117-125.
6 Davies, K. J., Ermak, G., Rothermel, B. A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider, S., Strippoli, P., Carinci, P., Min, K. T., Fox, D. S., Cunningham, K. W., Bassel-Duby, R., Olson, E. N., Zhang, Z., Williams, R. S., Gerber, H. P., Perez-Riba, M., Seo, H., Cao, X., Klee, C. B., Redondo, J. M., Maltais, L. J., Bruford, E. A., Povey, S., Molkentin, J. D., McKeon, F. D., Duh, E. J., Crabtree, G. R., Cyert, M. S., de la Luna, S. and Estivill, X. 2007. Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028.   DOI
7 Dougall, W. C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M. E., Maliszewski, C. R., Armstrong, A., Shen, V., Bain, S., Cosman, D., Anderson, D., Morrissey, P. J., Peschon, J. J. and Schuh, J. 1999. RANK is essential for osteoclast and lymph node development. Genes. Dev. 13, 2412-2424.   DOI
8 Fuentes, J. J., Genesca, L., Kingsbury, T. J., Cunningham, K. W., Perez-Riba, M., Estivill, X. and de la Luna, S. 2000. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 9, 1681-1690.   DOI
9 Hasegawa, H., Kido, S., Tomomura, M., Fujimoto, K., Ohi, M., Kiyomura, M., Kanegae, H., Inaba, A., Sakagami, H. and Tomomura, A. 2010. Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J. Biol. Chem. 285, 25448-25457.   DOI
10 Fuentes, J. J., Pritchard, M. A. and Estivill, X. 1997. Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44, 358-361.   DOI
11 Hassold, T. J. and Jacobs, P. A. 1984. Trisomy in man. Annu. Rev. Genet. 18, 69-97.   DOI
12 Hirakawa, Y., Nary, L. J. and Medh, R. D. 2009. Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis. J. Mol. Signal. 4, 6.   DOI
13 James, I. E., Lark, M. W., Zembryki, D., Lee-Rykaczewski, E. V., Hwang, S. M., Tomaszek, T. A., Belfiore, P. and Gowen, M. 1999. Development and characterization of a human in vitro resorption assay: demonstration of utility using novel antiresorptive agents. J. Bone Miner. Res. 14, 1562-1569.   DOI
14 Jang, C., Lim, J. H., Park, C. W. and Cho, Y. J. 2011. Regulator of calcineurin 1 Isoform 4 (RCAN1.4) is overexpressed in the glomeruli of diabetic mice. Kor. J. Physiol. Pharmacol. 15, 299-305.   DOI   ScienceOn
15 Kuroda, Y., Hisatsune, C., Nakamura, T., Matsuo, K. and Mikoshiba, K. 2008. Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc. Natl. Acad. Sci. USA 105, 8643-8648.   DOI
16 Peiris, H., Raghupathi, R., Jessup, C. F., Zanin, M. P., Mohanasundaram, D., Mackenzie, K. D., Chataway, T., Clarke, J. N., Brealey, J., Coates, P. T., Pritchard, M. A. and Keating, D. J. 2012. Increased expression of the glucose-responsive gene, RCAN1, causes hypoinsulinemia, beta-cell dysfunction, and diabetes. Endocrinology 153, 5212-5221.   DOI
17 Li, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, R., Scully, S., Van, G., Kaufman, S., Juan, S. C., Sun, Y., Tarpley, J., Martin, L., Christensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C. R., Lacey, D. L. and Boyle, W. J. 2000. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566-1571.   DOI
18 Mammucari, C., Tommasi di Vignano, A., Sharov, A. A., Neilson, J., Havrda, M. C., Roop, D. R., Botchkarev, V. A., Crabtree, G. R. and Dotto, G. P. 2005. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev. Cell 8, 665-676.   DOI
19 Minami, T. 2014. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J. Biochem. 155, 217-226.   DOI
20 Porta, S., Serra, S. A., Huch, M., Valverde, M. A., Llorens, F., Estivill, X., Arbones, M. L. and Marti, E. 2007. RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration. Hum. Mol. Genet. 16, 1039-1050.   DOI
21 Rothermel, B. A., Vega, R. B. and Williams, R. S. 2003. The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends. Cardiovasc. Med. 13, 15-21.   DOI
22 Sun, X., Wu, Y., Herculano, B. and Song, W. 2014. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS One 9, e95471.   DOI
23 Ryeom, S., Greenwald, R. J., Sharpe, A. H. and McKeon, F. 2003. The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin. Nat. Immunol. 4, 874-881.   DOI
24 Sanna, B., Brandt, E. B., Kaiser, R. A., Pfluger, P., Witt, S. A., Kimball, T. R., van Rooij, E., De Windt, L. J., Rothenberg, M. E., Tschop, M. H., Benoit, S. C. and Molkentin, J. D. 2006. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl. Acad. Sci. USA 103, 7327-7332.   DOI
25 Seeman, E. and Delmas, P. D. 2006. Bone quality-the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250-2261.   DOI
26 Wei, S., Teitelbaum, S. L., Wang, M. W. and Ross, F. P. 2001. Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology 142, 1290-1295.
27 Weischenfeldt, J. and Porse, B. 2008. Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. CSH Protoc 2008, pdb prot5080.
28 Wu, H., Kao, S. C., Barrientos, T., Baldwin, S. H., Olson, E. N., Crabtree, G. R., Zhou, B. and Chang, C. P. 2007. Down syndrome critical region-1 is a transcriptional target of nuclear factor of activated T cells-c1 within the endocardium during heart development. J. Biol. Chem. 282, 30673-30679.   DOI