• Title/Summary/Keyword: action potential (AP)

Search Result 23, Processing Time 0.027 seconds

A STUDY OF NORMAL VALUE OF ACTION POTENTIAL AND SUMMATING POTENTIAL IN GUINEA PIG (Guinea Pig에서 Action Potential과 Summating Potential의 정상치에 관한 연구)

  • 차몽철;윤주헌;정광현;김희남;심윤주
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1987.05a
    • /
    • pp.7.2-7
    • /
    • 1987
  • Waver 와 Bray (1930) 가 cochlear microphonic을 처음 발견한 이래 Derbyshire 와 Davis (1935)는 summating potential을 각각 처음 기술하여 이 세가지 전위를 electrocochleogram 이라 칭하였고 이는 감음신경성 난청의 감별진단 및 청각생리연구에 이용되어 왔다. 저자들은 정상 guinea pig 10 마리를 대상으로 DANAC 7E ERA청각계기를 사용하여 정원창에서 action potential과 summating potential을 측정하였으며 주파수에 따른 역치 자극간 간격 및 두 potential의 상호관계를 분석하여 다음과 같은 결과를 얻었다. 1) 주파수가 증가함에 따라 그 역치는 점차 감소하였다. 2) 자극음의 강도와 action potential의 $N_1$ component 진폭은 상호 비례관계를 보여 주었으며 주파수 증가에 따라 $N_1$ component 진폭은 점차 증가하였다. 3) Action potential 의 $N_1$ component latency는 주파수가 증가할수록 역비례 관계를 보여 주었다. 4) N$_1$ component의 진폭과 자극간 간격(interstimulus interval, ISI)과의 관계는 ISI가 80~160m sec사이에서 plateau를 형성하였다. 5) summating potential은 자극음의 강도가 증가함에 따라 그 진폭이 증가하였으며 action potential도 증가하였으나, SP/AP는 감소하는 경향을 보였다.

  • PDF

Effects of the Changes in Ca-current and Intracellular Ca-concentration on the Contraction and Action Potential Staircase (수축과 활동전압의 Staircase 현상에 대한 Ca-전류 및 세포내 $Ca^{2+}$ 농도 변화의 영향)

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.301-312
    • /
    • 1989
  • It well known that the magnitude of contraction and the shape of action potential depend upon the stimulation frequency and the duration of resting period (positive and negative staircase). Although the underlying mechanism of the staircase phenomenon is not fully understood, it has been suggested that staircase could be related to the intracllular $Ca^{2+}$ concentration. In order to elucidate the role of intracellular $Ca^{2+}$ on the contraction and action potential staircases, we examined the effects of 1 mM 4-aminopyridine (4-AP), 0.5 uM verapamil, 1 uM ryanodine, or reduction of extracellular Na concentration to 30% $(substituted\;by\;equimolar\;Li^+)$ in small atrial strips of the rabbit $(3{\times}10\;mm)$. The results obitained were as follows; 1) When the stimulation frequency was increased from 0.1 Hz to 2 Hz, positive staircase of the contraction and elevation of plateau level in action potential were found in control and the conditions of Na reduction and treatments of 4-AP, verapamil and ryanodine. 2) When stimulation frequency returned to 0.1 Hz from 1 min rest just after 2 Hz stimulation fer 1 min, the magnitudes of initial few contractions were larger than that of steady state contraction (post-rest potentiation) except, ryanodine or Na-reduction groups. 3) Negative staircase of contraction was developed in control and 4-AP group at post-rest 0.1 Hz stimulation and the plateau level of the action potential was decreased at the same time. But the reduction of contraction or the plateau level was much smaller in 4-AP group and than in control. From the above results it can be concluded that contraction and action potential staircase is dependent upon transmembrane $Ca^{2+}-current\;and\;Ca^{2+}$release from the SR.

  • PDF

Effects of Racemic Ketamine on Excitable Membranes of Frog (개구리 세포막에 대한 Racemic Ketamine의 영향)

  • Lee, Jong-Hwa;Frank, George B.
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 1991
  • The effect of racemic Ketamine HCl was observed on excitable membranes of sciatic nerve fibres and toe muscles from frog. Ketamine significantly depressed the amplitude of the action potential, maximum rate of rise and that of fall of action potentials of sciatic nerve by dose-dependent and time-course manner, and also it produced the inhibition of $K^+-contracture$ in toe muscle. We used two different ways of sucrose gap method to to obtain the better results from sciatic nerve. We observed and compared the effect of ketamine on sciatic nerve with naloxone, 4-AP (4-aminopyridine) and TEA (Tetraethylammonium). Naloxone significantly but not totally blocked the effect of ketamine both on nerve and on skeletal muscle. 4-AP or TEA by itself had a significant depressant effect on the action potentials on nerve by central perfusion (extracellular perfusion), but both of these drugs did not much affect the action of Ketamine on nerve. The reversibility of effect of Ketamine (10 mM) was observed both on nerve and on skeletal muscles when exposed to drug for short duration. The effects of racemic ketamine described may provide to support that one of the mechanisms of the action of Ketamine on nerve and on muscles of frog might be related to non-specifically effect on receptors within the ion channels $(K^+-channel,\;Na^+-channel\;or\;slow\;Ca^{++}\;channel)$ at higher dose which produces anesthetic effect and also it interacts specifically with one of the opioid receptors or subtype of these receptors which is sensitive to Naloxone at lower dose which produces analgesia.

  • PDF

Role of Stretch-Activated Channels in Stretch-Induced Changes of Electrical Activity in Rat Atrial Myocytes

  • Youm, Jae-Boum;Jo, Su-Hyun;Leem, Chae-Hun;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • We developed a cardiac cell model to explain the phenomenon of mechano-electric feedback (MEF), based on the experimental data with rat atrial myocytes. It incorporated the activity of ion channels, pumps, exchangers, and changes of intracellular ion concentration. Changes in membrane excitability and $Ca^{2+}$ transients could then be calculated. In the model, the major ion channels responsible for the stretch-induced changes in electrical activity were the stretch-activated channels (SACs). The relationship between the extent of stretch and activation of SACs was formulated based on the experimental findings. Then, the effects of mechanical stretch on the electrical activity were reproduced. The shape of the action potential (AP) was significantly changed by stretch in the model simulation. The duration was decreased at initial fast phase of repolarization (AP duration at 20% repolarization level from 3.7 to 2.5 ms) and increased at late slow phase of repolarization (AP duration at 90% repolarization level from 62 to 178 ms). The resting potential was depolarized from -75 to -61 mV. This mathematical model of SACs may quantitatively predict changes in cardiomyocytes by mechanical stretch.

Calcium Influx is Responsible for Afterdepolarizations in Rat Hippocampal Dentate Granule Cells

  • Park, Won-Sun;Lee, Suk-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2002
  • Granule cells in dentate gyrus of hippocampus relay information from entorhinal cortex via perforant fiber to pyramidal cells in CA3 region. Their electrical activities are known to be closely associated with seizure activity as well as memory acquisition. Since action potential is a stereotypic phenomena which is based on all-or-none principle of $Na^+$ current, the neuronal firing pattern is mostly dependent on afterpotentials which follows the stereotypic $Na^+$ spike. Granule cells in dentate gyrus show afterdepolarization (ADP), while interneurons in dentate gyrus have afterhyperpolarizaton. In the present study, we investigated the ionic mechanism of afterdepolarization in hippocampal dentate granule cell. Action potential of dentate granule cells showed afterdepolarization, which was characterized by a sharp notch followed by a depolarizing hump starting at about $-49.04{\pm}1.69\;mV\;(n=43,\;mean{\pm}SD)$ and lasting $3{\sim}7$ ms. Increase of extracellular $Ca^{2+}$ from 2 mM to 10 mM significantly enhanced the ADP both in amplitude and in duration. A $K^+$ channel blocker, 4-aminopyridine (4-AP, 2 mM), enhanced the ADP and often induced burst firings. These effects of 10 mM $Ca^{2+}$ and 4-AP were additive. On the contrary, the ADP was significantly suppressed by removal of external $Ca^{2+},$ even in the presence of 4-AP (2 mM). A $Na^+$ channel blocker, TTX (100 nM), did not affect the ADP. From these results, it is concluded that the extracellular $Ca^{2+}$ influx contributes to the generation of ADP in granule cells.

Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439

  • Lee, Hyang-Ae;Kwon, Miso;Kim, Hyeon-A;Kim, Ki-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.393-402
    • /
    • 2019
  • Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with $IC_{50}$ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect $I_{Na}$, $I_{Ks}$ or $I_{K1}$, but decreased $I_{hERG}$ in a dose-dependent manner ($IC_{50}$: $6.53{\mu}M$). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to $3{\mu}M$, but it at $10{\mu}M$ induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

Korean Red Ginseng saponin fraction exerts anti-inflammatory effects by targeting the NF-κB and AP-1 pathways

  • Lee, Jeong-Oog;Yang, Yanyan;Tao, Yu;Yi, Young-Su;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.489-495
    • /
    • 2022
  • Background: Although ginsenosides and saponins in Korea red ginseng (KRG) shows various pharmacological roles, their roles in the inflammatory response are little known. This study investigated the anti-inflammatory role of ginsenosides identified from KRG saponin fraction (RGSF) and the potential mechanism in macrophages. Methods: The ginsenoside composition of RGSF was identified by high-performance liquid chromatography (HPLC) analysis. An anti-inflammatory effect of RGSF and its mechanisms were studied using nitric oxide (NO) and prostaglandin E2 (PGE2) production assays, mRNA expression analyses of inflammatory genes and cytokines, luciferase reporter gene assays of transcription factors, and Western blot analyses of inflammatory signaling pathways using the lipopolysaccharide (LPS)-treated RAW264.7 cells. Results: HPLC analysis identified the types and amounts of various panaxadiol ginsenosides in RGSF. RGSF reduced the generation of inflammatory molecules and mRNA levels of inflammatory enzymes and cytokines in LPS-treated RAW264.7 cells. Additionally, RGSF inhibited the signaling pathways of NF-κB and AP-1 by suppressing both transcriptional factors and signaling molecules in LPS-treated RAW264.7 cells. Conclusion: RGSF contains ginsenosides that have anti-inflammatory action via restraining the NF-κB and AP-1 signaling pathways in macrophages during inflammatory responses.

Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats

  • Thakur, Ajit Kumar;Chatterjee, Shyam Sunder;Kumar, Vikas
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.7.1-7.8
    • /
    • 2014
  • Metabolic effects of ten daily doses of standardized extract of Andrographis paniculata leaves (AP) rich in andrographolide were evaluated in a rat model of type-2 diabetes and in diet induced obese rats. AP was administered per-orally as suspension in 0.3% carboxymethylcellulose at doses of 50, 100 and 200 mg/kg/day for 10 consecutive days. Blood glucose, insulin and lipid profile of rats were measured by using enzyme kits. In addition, effects of such treatments on anti-oxidant enzymes activity and histopathological changes in various organs of diabetic rats were assessed. AP treatments reversed body weight losses and increased plasma insulin level in diabetic rats. The anti-oxidant enzymes activity became normal and histopathological changes observed in pancreas, liver, kidney and spleen of diabetic animals were less severe in extract treated groups. On the other hand, hyperinsulinemia and increased body weight gains observed in high fat or fructose fed rats were less severe in the extract treated groups. These observations revealed therapeutic potentials of the extract for treatments of diabesity associated metabolic disorders, and suggest that the effects of the extract on insulin homeostasis depend on the metabolic status of animals. Activation of cytoprotective mechanisms could be involved in its mode of action.

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

Electrophysiological and Morphological Classification of Inhibitory Interneurons in Layer II/III of the Rat Visual Cortex

  • Rhie, Duck-Joo;Kang, Ho-Young;Ryu, Gyeong-Ryul;Kim, Myung-Jun;Yoon, Shin-Hee;Hahn, Sang-June;Min, Do-Sik;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.317-323
    • /
    • 2003
  • Interneuron diversity is one of the key factors to hinder understanding the mechanism of cortical neural network functions even with their important roles. We characterized inhibitory interneurons in layer II/III of the rat primary visual cortex, using patch-clamp recording and confocal reconstruction, and classified inhibitory interneurons into fast spiking (FS), late spiking (LS), burst spiking (BS), and regular spiking non-pyramidal (RSNP) neurons according to their electrophysiological characteristics. Global parameters to identify inhibitory interneurons were resting membrane potential (>-70 mV) and action potential (AP) width (<0.9 msec at half amplitude). FS could be differentiated from LS, based on smaller amplitude of the AP (<∼50 mV) and shorter peak-to-trough time (P-T time) of the afterhyperpolarization (<4 msec). In addition to the shorter AP width, RSNP had the higher input resistance (>200 $M{Omega}$) and the shorter P-T time (<20 msec) than those of regular spiking pyramidal neurons. Confocal reconstruction of recorded cells revealed characteristic morphology of each subtype of inhibitory interneurons. Thus, our results provide at least four subtypes of inhibitory interneurons in layer II/III of the rat primary visual cortex and a classification scheme of inhibitory interneurons.