• Title/Summary/Keyword: acoustic variation

Search Result 356, Processing Time 0.026 seconds

Influence of Resin-Infiltrated Time on Wood Natural Materials Using Conventional/Air-Coupled Ultrasound Waves

  • Park, Je-Woong;Kim, Do-Jung;Kweon, Young-Sub;Im, Kwang-Hee;Hsu, David K.;Kim, Sun-Kyu;Yang, In-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.235-241
    • /
    • 2009
  • Composite wood materials are very sensitive to water and inspection without any coupling medium of a liquid is really needed to wood materials due to the permeation of coupling medium such as water. However, air-coupled ultrasound has obvious advantages over water-coupled experimentation compared with conventional C-scanner. In this work, it is desirable to perform contact-less nondestructive evaluation to assess wood material homogeneity. A wood material was nondestructively characterized with non-contact and contact modes to measure ultrasonic velocity using automated data acquisition software. We have utilized a proposed peak-delay measurement method. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. The variation of ultrasonic velocity was found to be somewhat difference due to air-coupled limitations over conventional scan images. However, conventional C-scan images are well agreed with increasing the resin-infiltrated time as expected. Finally, we have developed a measurement system of an ultrasonic velocity based on data acquisition software for obtaining ultrasonic quantitative data for correlation with C-scan images.

Effects of Injection and Temperature Variations on the Breakdown Pressure of Rocks (암석의 수압파쇄특성에 미치는 주입률과 온도의 영향)

  • 이찬구;송무영;최원학;장천중;이종옥
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • To elucidate the effects of flow rate on the hydraulic fracturing property of andesite, the hydraulic fracturing tests were conducted under three flow rates. As the tests are conducted with 1ml/min, 2ml/min and 3 ml/min under the constant axial load of 40 kN, the breakdown pressures of andesite seem to be constant as 163kg/cm$^2$. The hydraulic fracturing tests were carried out under the temperatures of five stages to elucidate the effects of temperature variation on hydraulic fracturing property of granite. As the tests are carried out under the constant flow rate of 1.7ml/min, with the axial load of 40kN, the breakdown pressures of granite are 168kg/cm$^2$ at room temperature, and 124kg/cm$^2$ at 20$0^{\circ}C$. The breakdown pressure decreases about 25% than that of room temperature with increasing the temperature. Under the controlled flow rates, the initiation pressures of the microcracks of granite are well coincided with the breakdown pressures and these results are also confirmed by the levels of acoustic emission.

  • PDF

The Ultrasonic Image Processing by Peak Value, Time Average and Depth Profile Technique in High Frequency Bandwidth (고주파대역에서 피크값, Time Average 및 Depth Profile 초음파 영상처리)

  • 이종호
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.120-127
    • /
    • 1998
  • In this paper, ultrasonic images of 25MHz bandwidth were acquired by applying peak value variation, time average and depth profile algorithm to acoustic microscopy and its performance was compared and analysed with each other. In the time average algorithm, total reflecting pulse wave from a spot on the coin was converted to digital data in time domain and average value of the converted 512 data was calculated in computer. Time average image was displayed by gray levels colour of acquired N x N matrix average data in the scanning area on the sample. This technique having smoothing effects in time domain make developed an ultrasonic image on a highly scattering area. In depth profile technique, time difference between the reference and the reflected signal was detected with minimum resolution performance of 2ns, thus we can acquired real 3 dimensional shape of the scanning area in accordance with relative magnitude. Through these experiments, peak value, time average and depth profile images were analysed and advantages of each algorithm were proposed.

  • PDF

Seepage Velocity and Borehole Image of Bottom Protection Layer Filled with Dredged Sand in Sea Dyke (준설해사로 충진된 바닥보호공의 형상 및 침투유속평가)

  • Oh, Young-In;Kang, Byung-Yoon;Kim, Ki-Nyeon;Cho, Young-Gwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1727-1734
    • /
    • 2008
  • After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.

  • PDF

Fabrication of a 2-2 Mode Piezocomposite and Derivation of its Equivalent Properties (2-2형 압전복합체 제작 및 등가 물성 도출)

  • Shin, Ho-Seop;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.436-445
    • /
    • 2011
  • In this paper, equivalent properties of 2-2 mode piezocomposites were studied. Variation of the properties of 2-2 mode piezocomposites was analyzed by the finite element method, and the result was compared with experimental measurement data to confirm the validity of the analysis. The equivalent properties of a single phase material to represent the piezocomposite composed of PZT-5H and polymer were derived by the asymptotic averaging method. Accuracy of the derived equivalent properties was enhanced by minimizing the discrepancy between the impedance spectra of full 2-2 piezocomposite and equivalent single phase material resonators of various vibration modes by the least square method. The equivalent properties of 2-2 piezocomposites derived in this study can be utilized to the design of diverse acoustic sensors.

Error analysis of acoustic target detection and localization using Cramer Rao lower bound (크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석)

  • Park, Ji Sung;Cho, Sungho;Kang, Donhyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.218-227
    • /
    • 2017
  • In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

The impact of language-learning environments on Korean learners' English vowel production

  • Lee, Shinsook;Nam, Hosung;Kang, Jaekoo;Shin, Dong-Jin;Kim, Young Shin
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • The current study investigated whether Korean learners' English-learning environments, especially target English accent (General American English (GAE) vs. Southern British English (SBE)) and English-language experience affected their production of English vowels. Thirty six EFL learners, 27 ESL-US learners, and 33 ESL-UK learners produced 8 English vowels with a bVt frame (beat, bit, bet, bat, bought, bot, boat, boot). The learners' productions were acoustically analyzed in terms of F1 and F2 frequencies. The overall results revealed that the learners' target accent had an effect on their production of some English vowels. The EFL and ESL-US learners' (especially, female learners') production of bought, bot, boat, and boot, which show characteristic differences between the GAE and SBE accents, was closer to that of the native American English (AE) speakers than the native British English (BE) speakers. In contrast, the ESL-UK learners' production of bought and bot demonstrated the opposite pattern. Thus, the impact of target accent was not demonstrated across the board. The effect of the learners' different English-language experience was also rather limited. This was because the EFL learners' production was not much different from the ESL-US learners' production, in spite of the ESL-US learners' residence in the US for more than 9 years. Furthermore, the Korean learners, irrespective of their different English-language experience, tended to produce bit and bat with lower F1 than the native AE and BE speakers, thus resulting in bit and bat to be produced similarly to beat and bet, respectively. This demonstrates the learners' persistent L1 effects on their English vowel production despite the learners' residence in the English speaking countries or their high English proficiency.

Electric Spark System as Underwater Acoustic Source - I. Pressure pulses from low electric energy - (수중음원으로써의 전기방전시스템- I. 낮은 전기에너지로부터의 음압펄스 -)

  • Kim, Sung-Boo;Kim, Sang-Han
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.32-35
    • /
    • 1996
  • The pressure pulses generated from the underwater electric spark system ranged from 0.4 to 1.6kJ are measured with the variation of source depth and range. The characteristics of pressure pulses obtained through this experiment continue to show the same electric energy and depth dependence previously reported, but two particular phenomena are observed. First, it is observed that the peak pressure of the 1st bubble pulse induced from implosion is higher than that of the initial shock wave, which is particularily apparent to high electric energy more than 10kJ previous studies. Second, it has been reported that the energy ratio (potential energy of bubble/intrinsic energy of source) has some tendency to "droop" on the low electric energy as 0.02 for 5kJ and 0.01 for 1kJ but the results of the present experiment show that it continues to have the ratio of 0.01 near 1kJ again.

  • PDF

Dynamic Characteristics of Coaxial Swirl-Jet Injector with Acoustic Excitation (동축형 스월-제트 인젝터의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.691-698
    • /
    • 2017
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by applying excitation to jet or swirl flow using a loudspeaker. As a result of measuring the ITF according to the variation of feed system length, the ITF peak occurs at the resonance frequency of the space where the perturbed flow passes. When applying the excitation to the jet flow, as the jet flow increases up to 56 slpm, the magnitude of ITF decreases, and ITF increases thereafter. Therefore the larger the velocity difference between the jet and the swirl flow, the larger the ITF. In the case of the swirl excitation, the ITF decreases as the jet flow increases because of the decrease of the energy with respect to the constant flow at the downstream. This difference is caused by the location of the hot wire anemometer on the downstream of the injector center axis.

  • PDF