• Title/Summary/Keyword: acid protease

Search Result 669, Processing Time 0.03 seconds

Modification of Wool Fiber by Enzymatic Treatment (I) (효소처리에 의한 양모섬유의 개질 (I))

  • Park, Jung-A;Park, Jeoung-Young;Lim, Yong-Jin
    • Textile Coloration and Finishing
    • /
    • v.3 no.4
    • /
    • pp.7-12
    • /
    • 1991
  • Wool gabardines were treated with alkaline proteases, and their tensile strerigth and dyeing behavior were obtained. Enzylon ASA 30 and Alcalase 2.5L DX did not show much effect on the weight loss of wool, but Esperase 8.0L decreased the weight of wool to a great extent. Pretreatment of wool with dichloroisocyarturic acid before protease-treatment increased the weight loss of wool considerably. Weight loss was accompanied by serious strength decrease and the use of sodium sulfate in the protease-treatment had not effect on the strength retention, only lowering the weight loss of wool. Protease-treatment of wool increased dyeability considerably, which may be due to the change in the inner structure of wool fiber by protease.

  • PDF

Crystallization of $\alpha$-amylase and protease of Asp. oryzae from Column Chormatography(III) - Crystallization and Chemical Properties of $\alpha$-Amylase of Aspergillus oryzae S.H.W. 131- (컬럼 크로마토그라피에 의한 아스퍼질러스 계통의$\alpha$-아미라제 및 프로테아제의 結晶化(제 3 보) -Aspergillus oryzae S.H.W. 131의 $\alpha$-amylase의 結晶化 및 化學的 性質-)

  • 서항원
    • Korean Journal of Microbiology
    • /
    • v.10 no.3
    • /
    • pp.106-108
    • /
    • 1972
  • The enzyme was produced by Asp.oryzae SHW 131. the enzymatic properties of .alpha.-amylase are following : 1) Crystallization of .alpha.-amylase is formed of longish square. 2) The range of stable pH is 5-10 and optimum ph is 5.5. 3) It is very unstable enzyme about EDTA and protection by $Ca^{++}$ ion and best activated at $50^{\circ}C$ about temperature. 4) Asp.oryzae SHW 131 produced .alpha.-amylase with acid-protease, neutral-protease and tepid-alkalin-protease.

  • PDF

Crystallization of $\alpha$-amylase and protease of Asp. oryzae from Column Chormatography(III) - Crystallization and Chemical Properties of $\alpha$-Amylase of Aspergillus oryzae S.H.W. 131- (컬럼 크로마토그라피에 의한 아스퍼질러스 계통의$\alpha$-아미라제 및 프로테아제의 結晶化(제 3 보) -Aspergillus oryzae S.H.W. 131의 $\alpha$-amylase의 結晶化 및 化學的 性質-)

  • Seo, Hang Won
    • Korean Journal of Microbiology
    • /
    • v.10 no.3
    • /
    • pp.105-105
    • /
    • 1972
  • The enzyme was produced by Asp.oryzae SHW 131. the enzymatic properties of .alpha.-amylase are following : 1) Crystallization of .alpha.-amylase is formed of longish square. 2) The range of stable pH is 5-10 and optimum ph is 5.5. 3) It is very unstable enzyme about EDTA and protection by $Ca^{++}$ ion and best activated at $50^{\circ}C$ about temperature. 4) Asp.oryzae SHW 131 produced .alpha.-amylase with acid-protease, neutral-protease and tepid-alkalin-protease.

Production, purification and characterization of extracellular protease from Streptomyces scabiei subsp. chosunensis M0137

  • Han, Ji-Man;Yoo, Jin-Cheol
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.334.1-334.1
    • /
    • 2002
  • Streptomyces scabiei subsp. chosunensis M0137. nonadecanoic acid producer. showed the highest protease activity when grown in OSY medium (oatmeal 1.5%, soybean meal 2%, dried yeast 1 %) supplemented with. glycerol (1 %) and CaCO3 (0.1 %). Two forms of protease(SS-1 and SS-2) were fractionated and purified through Ultrogel AcA 54 gel filtration and DEAE-sepharose CL-6B column chromatography. Both proteases were practically stable in the pH range of 6-10. The optimal pH for the activities of both protease 88-1 and 8S-2 were 7.5 and 8.0. respectively. (omitted)

  • PDF

Alkaline Protease Production from Bacillus gibsonii 6BS15-4 Using Dairy Effluent and Its Characterization as a Laundry Detergent Additive

  • Polson Mahakhan;Patapee Apiso;Kannika Srisunthorn;Kanit Vichitphan;Sukanda Vichitphan;Sukrita Punyauppa-path;Jutaporn Sawaengkaew
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.195-202
    • /
    • 2023
  • Protease is a widely used enzyme particularly in the detergent industry. In this research, we aimed to isolate alkaline protease-producing bacteria for characterization as a laundry detergent additive. The screening of alkaline protease production was investigated on basal medium agar plus 1% skim milk at pH 11, with incubation at 30℃. The highest alkaline protease-producing bacterium was 6BS15-4 strain, identified as Bacillus gibsonii by 16S rRNA gene sequencing. While the optimum pH was 12.0, the strain was stable at pH range 7.0-12.0 when incubated at 45℃ for 60 min. The alkaline protease produced by B. gibsonii 6BS15-4 using dairy effluent was characterized. The optimum temperature was 60℃ and the enzyme was stable at 55℃ when incubated at pH 11.0 for 60 min. Metal ions K+, Mg2+, Cu2+, Na+, and Zn2+ exhibited a slightly stimulatory effect on enzyme activity. The enzyme retained over 80% of its activity in the presence of Ca2+, Ba2+, and Mn2+. Thiol reagent and ethylenediaminetetraacetic acid did not inhibit the enzyme activity, whereas phenylmethylsulfonyl fluoride significantly inhibited the protease activity. The alkaline protease from B. gibsonii 6BS15-4 demonstrated efficiency in blood stain removal and could therefore be used as a detergent additive, with potential for various other industrial applications.

Protease Inhibitors in Porcine Colostrum: Potency Assessment and Initial Characterization

  • Zhou, Q.;He, R.G.;Li, X.;Liao, S.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1822-1829
    • /
    • 2003
  • Porcine colostrum and milk were separated into the acid-soluble and casein fractions by acidification followed by centrifuge. The acid-soluble fraction of porcine colostrum was further separated by liquid chromatography and anisotropic membrane filtration. Trypsin and chymotrypsin inhibitory capacity in porcine colostrum, milk and their components was determined by incubating bovine trypsin or chymotrypsin in a medium containing their corresponding substrates with or without addition of various amounts of porcine colostrum, porcine milk or their components. The inhibition of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) degradation in pig small intestinal contents by porcine colostrum was measured by incubating iodinated IGF-I or EGF with the intestinal contents with or without addition of porcine colostrum. Degradation of labeled IGF-I or EGF was determined by monitoring the generation of radioactivity soluble in 30% trichloroacetic acid (TCA). The results showed that porcine colostrum had high levels of trypsin and chymotrypsin inhibitory activity and increased the stability of IGF-I and EGF in pig intestinal contents. The inhibitory activity declined rapidly during lactation. It was also found that trypsin and chymotrypsin inhibitory activity and the inhibition on IGF-I and EGF degradation in the acid-soluble fraction were higher than that in the casein fraction. Heat-resistance study indicated that trypsin inhibitors in porcine colostrum survived heat treatments of $100^{\circ}C$ water bath for up to 10 min, but exposure to boiling water bath for 30 min significantly decreased the inhibitory activity. Compared with the trypsin inhibitors, the chymotrypsin inhibitors were more heatsensitive. Separation of the acid-soluble fraction of porcine colostrum by liquid chromatography and anisotropic membrane filtration revealed that the trypsin and chymotrypsin inhibitory capacity was mainly due to a group of small proteins with molecular weight of 10,000-50,000. In conclusion, the present study confirmed the existence of high levels of protease inhibitors in porcine colostrum, and the inhibition of porcine colostrum on degradation of milk-borne growth factors in the pig small intestinal tract was demonstrated for the first time.

Antioxidant activity and polyphenol content of fermented Sparassis latifolia extracts (꽃송이버섯 발효물의 항산화 활성 및 폴리페놀 함량 변화)

  • Yang, Seung-Hwa;Lee, Yong-Jo;Kim, Da-Song;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.268-274
    • /
    • 2019
  • Sparassis latifolia is a useful medicinal mushroom that has recently gained popularity in Asia. It has a rich flavor and is a good source of nutrients contains a large number of polyphenols for a functional food or dietary supplement. In addition, S. latifolia is rich in beta-glucan and gamma-aminobutyric acid (GABA). These two compounds have been reported to show immune-stimulating and anticancer effects by numerous studies. In this study, four species of lactic acid bacteria (Lactobacillus plantarum subsp. plantarum, L. acidophilus, L. helveticus, and L. delbrueckii subsp. bulgaricus) were used to ferment the fruiting body of S. latifolia. Fermented S. latifolia extracts were found to have a higher polyphenol content and antioxidant activity following fermentation as well as increased protease activity.

Physicochemical and Sensory Properties of Jinyang-ju Prepared with Glutinous Rice and Nonglutinous Rice (찹쌀과 멥쌀로 제조한 진양주의 이화학적 및 관능적 특성)

  • Park, Yun-Mi;Kim, Seon-Jae;Hwang, In-Sik;Cho, Kwang-Ho;Jung, Soon-Teck
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.3
    • /
    • pp.346-351
    • /
    • 2005
  • The physiochemical characteristics and sensory properties of Jinyang-ju was investigated on pH, total acidity, alcohol content, conductivity, dissolved solid, turbidity, reducing sugar content and sensory evaluation. Glutinous rice starter showed the enzyme activity that the ${\alpha}-amylase$ was 121.0 unit, ${\beta}-amylase$ was 40.0 unit and acidic. neutrality protease were 34.2, 23.7 unit, while the nonglutinous rice starter showed ${\alpha}-amylase$ was 156.0 unit, ${\beta}-amylase$ was 45.2 unit, acidic neutrality protease were 9.06, and 0.1 unit, respectively. The pH of the glutinous rice Jinyang-ju and nonglutinous rice Jinyang-ju showed the value of 5.33 and 4.04, total acidity of 2.30% and 2.05%, alcohol(%) of $2.58{\sim}13.5%\;and\;2.51{\sim}15.5%$, total organic acid content(mg%) of 4.35 and 7.63, free sugar of 4.98 mg% and 2.90 mg%, respectively. The sensory evaluation showed that the glutinous rice Jinyang-ju was more acceptable value than nonglutinous rice Jinyang-ju.

Investigation of the Protonated State of HIV-1 Protease Active Site

  • Nam, Ky-Youb;Chang, Byung-Ha;Han, Cheol-Kyu;Ahn, Soon-Kil;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.817-823
    • /
    • 2003
  • We have performed ab initio calculation on the active site of HIV-1 protease. The FEP method was used to determine the binding free energy of four different of protonated states of HIV-1 protease with inhibitor. The structure of the active site and hole structure was taken from the X-ray crystallographic coordinates of the C₂ symmetric inhibitor A74704 protease bound. The active site was modeled with the fragment molecules of binding pocket, acetic acid/ acetate anion (Asp25, Asp125), formamide (amide bond of Thr26/Gly27, Thr126/ Gly127), and methanol as inhibitor fragment. All possibly protonated states of the active site were considered, which were diprotonated state (0, 0), monoprotonated (-1, 0),(0, -1) and diunprotonated state (-1, -1). Once the binding energy Debind, of each model was calculated, more probabilistic protonated states can be proposed from binding energy. From ab-initio results, the FEP simulations were performed for the three following mutations: Ⅰ) Asp25 … Asp125 → AspH25 … Asp125, ⅱ) Asp25 … Asp125 → Asp25 … AspH125, ⅲ) AspH25 … Asp125 → AspH25 … AspH125. The free energy difference between the four states gives the information of the more realistic protonated state of active site aspartic acid. These results provide a theoretical prediction of the protonation state of the catalytic aspartic residues for A74707 complex, and may be useful for the evaluation of potential therapeutic targets.

Co-Expression of a Chimeric Protease Inhibitor Secreted by a Tumor-Targeted Salmonella Protects Therapeutic Proteins from Proteolytic Degradation

  • Quintero, David;Carrafa, Jamie;Vincent, Lena;Kim, Hee Jong;Wohlschlegel, James;Bermudes, David
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2079-2094
    • /
    • 2018
  • Sunflower trypsin inhibitor (SFTI) is a 14-amino-acid bicyclic peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli OmpA and Pseudomonas aeruginosa ToxA, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from an individual colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14-amino-acid, disulfide-bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of anticancer cytotoxicity. However, when OTG-PE38K was co-expressed with YebF-SFTI, cytotoxicity was completely retained in the presence of trypsin. These data demonstrate SFTI chimeras are secreted in a functional form and that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.