Browse > Article
http://dx.doi.org/10.4014/jmb.1807.08036

Co-Expression of a Chimeric Protease Inhibitor Secreted by a Tumor-Targeted Salmonella Protects Therapeutic Proteins from Proteolytic Degradation  

Quintero, David (Department of Biology, California State University Northridge)
Carrafa, Jamie (Department of Biology, California State University Northridge)
Vincent, Lena (Department of Biology, California State University Northridge)
Kim, Hee Jong (Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles)
Wohlschlegel, James (Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles)
Bermudes, David (Department of Biology, California State University Northridge)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.12, 2018 , pp. 2079-2094 More about this Journal
Abstract
Sunflower trypsin inhibitor (SFTI) is a 14-amino-acid bicyclic peptide that contains a single internal disulfide bond. We initially constructed chimeras of SFTI with N-terminal secretion signals from the Escherichia coli OmpA and Pseudomonas aeruginosa ToxA, but only detected small amounts of protease inhibition resulting from these constructs. A substantially higher degree of protease inhibition was detected from a C-terminal SFTI fusion with E. coli YebF, which radiated more than a centimeter from an individual colony of E. coli using a culture-based inhibitor assay. Inhibitory activity was further improved in YebF-SFTI fusions by the addition of a trypsin cleavage signal immediately upstream of SFTI, and resulted in production of a 14-amino-acid, disulfide-bonded SFTI free in the culture supernatant. To assess the potential of the secreted SFTI to protect the ability of a cytotoxic protein to kill tumor cells, we utilized a tumor-selective form of the Pseudomonas ToxA (OTG-PE38K) alone and expressed as a polycistronic construct with YebF-SFTI in the tumor-targeted Salmonella VNP20009. When we assessed the ability of toxin-containing culture supernatants to kill MDA-MB-468 breast cancer cells, the untreated OTG-PE38K was able to eliminate all detectable tumor cells, while pretreatment with trypsin resulted in the complete loss of anticancer cytotoxicity. However, when OTG-PE38K was co-expressed with YebF-SFTI, cytotoxicity was completely retained in the presence of trypsin. These data demonstrate SFTI chimeras are secreted in a functional form and that co-expression of protease inhibitors with therapeutic proteins by tumor-targeted bacteria has the potential to enhance the activity of therapeutic proteins by suppressing their degradation within a proteolytic environment.
Keywords
Protease inhibitors; sunflower trypsin inhibitor (SFTI); YebF; VNP20009; tumor-targeted Salmonella; OTG-PE38K;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yoon J, Maruyama J, Kitamoto K. 2004. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl. Microbiol. Biotechnol. 89: 747-759.
2 Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, Fitzgerald DJ, et al. 2009. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 113: 3792-3800.   DOI
3 Scharpe S, De Meester I, Hendriks D, Vanhoof G, van Sande M, Vriend G. 1991. Proteases and their inhibitors: today and tomorrow. Biochimie 73: 121-126.   DOI
4 Structural Genomics Consortium, China Structural Genomics Consortium, Northeast Structural Genomics consortium, et al. 2888. Protein production and purification. Nat. Methods. 5: 135-146.   DOI
5 Jose J, Zangen D. 2005. Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem. Biophys. Res. Commun. 333: 1218-1226.   DOI
6 Karnaukhova E, Ophir Y, Golding B. 2006. Recombinant human ${\alpha}_l$-proteinase inhibitor towards therapeutic use. Amino Acids 30: 317-332.   DOI
7 Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki I, Ellenhorn JD, et al. 2011. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonellabased STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res. 71: 4183-4191.   DOI
8 Yang, N, Zhu X, Chen L, Li S and Ren D. 2008. Oral administration of attenuated S. typhimurium carrying shRNAexpressing vectors as a cancer therapeutic. Cancer Biol. Ther. 7: 145-151.   DOI
9 Ryan RM, Green J, Williams PJ, Tazzyman S, Hunt S, Harmey JH, et al. 2009. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16: 329-339.   DOI
10 Jeong J-H, Kim K, Lim D, Jeong K, Hong Y, Nguyen VH, et al. 2014. Anti-tumoral effecto fo the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One 9: e80050.   DOI
11 St Jean AT, Swofford CA, Panteli JT, Brentzel JZ, Forbes NS. 2014. Bacterial delivery of Staphylococcus aureus ${\alpha}$ hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 22: 1266-1274.   DOI
12 Swofford CA, St. Jean AT, Panteli JT, Brentzel ZJ, Forbes NS. 2014. Identification of Staphylococcus aureus ${\alpha}$-hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnol. Bioeng. 111: 1233-1245.   DOI
13 Hoffman RM. 2015. Back to the Future: Are tumor-targeting bacteria the next-generation cancer therapy? Methods Mol. Biol. 1317: 239-260.
14 Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, et al. 2007. Expression of human al-proteinase inhibitor in Aspergillus niger. Microb. Cell Fact. doi: 10.1186/1475-2859-6-34.   DOI
15 Motta J-P, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset, P, et al. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Trans. Med. 4: 158ra144.
16 Forbes NS. 2010. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10: 785-794.   DOI
17 Mehdad A, Brumana G, Souza AA, Barbosa J, Ventura MM, de Freitas SM. 2016. A Bowman-Birk inhibitor induces apoptosis in human breast cancer adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cancer Death Discov. 2: 15067.   DOI
18 Quintero D, Carrafa J, Vincent L, Bermudes D. 2016. EGFRtargeted chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol. Bioeng. 113: 2698-2711.   DOI
19 Lim D, Kim KS, Kim H, Ko K-C, Song JJ, Choi JH, et al. 2017. Anti-tumor activity of an immunotoxin (TGF${\alpha}$-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget 8: 37550-37560.
20 Nakamura Y, Sato K, Wakimoto N, Kumura F, Okuyama A, Motososhi K. 2001. A new matrix metalloproteinase inhibitor SI-27 induces apoptosis in several human myeloid leukemia cell lines and enhances sensitivity to TNF alpha-induced apoptosis. Leukemia 15: 1217-1224.   DOI
21 Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2: 161-174.   DOI
22 Peters DC, Nobel S. 1999. Aprotinin: An update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs 57: 233-260.   DOI
23 Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, et al. 2002. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding ${\beta}$1-6 GlcNAc branching. J. Biol. Chem. 277: 16960-16967.   DOI
24 Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al. 1999. Lipid A mutant Salmonella with suppressed virulence and TNF${\alpha}_l$ induction retain tumor-targeting in vivo. Nat. Biotechnol. 17: 37-41.
25 Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB. et al. 2003. Progression of node-negative breast cancer and hepatocyte growth factor activator inhibitor 1 in the pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res. 63: 1101-1105.
26 LeBeau AM, Lee M, Murphy ST, Hann BC, Warren RS, Santos RD, et al. 2013. Imaging a functional tumorigenic biomarker in the transformed epithelium. Proc. Natl. Acad. Sci. USA 110: 93-98.   DOI
27 Uhland K. Matriptase and its putative role in cancer. 2006. Cell. Mol. Life Sci. 3: 2968-2978.
28 Pawelek JM, Low KB, Bermudes D. 1997. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57: 4537-4544.
29 Pawelek J, Low KB, Bermudes D. 2003. Bacteria as tumourtargeting vectors. Lancet Oncol. 4: 548-556.   DOI
30 Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, et al. 2000. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella. J. Infect. Dis. 181: 1996-2001.   DOI
31 Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. 2009. Attenuated Salmonella targets prodrug activating enzyme CPG2 to mouse melanoma, human breast and colon carcinomas for effective suicide gene therapy. Clin. Cancer Res. 14: 4259-4266.
32 Low KB, Ittensohn M, Luo X, Zheng L-M, King I, Pawelek JM, et al. 2004. Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol. Med. 90: 47-60.
33 Toso JF, Gill VJ , Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. 2002. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20: 142-152.   DOI
34 Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. 2003. Pilot trial of genetically modified, attenuated Salmonella expression E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10: 737-744.   DOI
35 Luckett S, Santiago Garcia R, Barker JJ, Konarev AV, Shewry PR, Clarke AR, et al. 1999. High resulution struction of a potent, cyclic protease inhibitor from sunflower seeds. J. Mol Biol. 290: 525-533.   DOI
36 Nguyen CT, Hong SH, Sin J-I, Vu VD, Jeon K, Cho KO, et al. 2013. Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine models. Vaccine 31: 3879-3887.   DOI
37 Zheng JH, Nguyen VH, Jiang S-N, Park S-H, Tan W, Hong SH, et al. 2017. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9: eaak9537.   DOI
38 Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. 2005. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 102: 755-760.   DOI
39 Kawaguchi K, Murakami T, Suetsugu A, Kiyuna T, Igarashi K, Hiroshima Y. et al. 2017. High-efficacy targeting of coloncancer liver metastasis with Salmonella typhimurium A1-R via intra-portal-vein injection in orthotopic nude-mouse models. Oncotarget 8: 19065-19073.
40 Murakami T, Kiyuna T, Kawaguchi K, Igarashi K, Singh AS, Hiroshima Y. et al. 2017. The irony of highly-effective bacterial therapy of a patient-derived orthotopic xenograft (PDOX) model of Ewing's sarcoma, which was blocked by Ewing himself 80 years ago. Cell Cycle 16: 1046-1052   DOI
41 Yuan C, Chen L, Meehan EJ, Daly N, Craik DJ Huang M, et al. 2011. Structure of the catalytic domain of matriptase complex with sunflower trypsin inhibitor-1. BMC Struct. Biol. doi: 10.1186/1472-6807-11-30.   DOI
42 Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo E, et al. 2015. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromalepithelial growth factor signaling. Nat. Commun. 6: 6776.   DOI
43 Marx UC, Korsinczky MLJ, Schirra HJ, Jones A, Condie B, Otvos Jr L, et al. 2003. Enzymatic cyclization of a potent Bowman-Birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide. J. Biol. Chem. 278: 21782-21789.   DOI
44 Takeuchi T, Harris JL, Wuang W, Yan KW, Coughlin SR, Craik CS. 2000. Cellular localization of membrane-type serine protease I and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275: 26333-26342.   DOI
45 Ge L, Shenoy SK, Lefkowitz RJ, DeFea K. 2004. Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J. Biol. Chem. 279: 55419-55424.   DOI
46 Bergum C, Zoratti G, List K. 2012. Strong expression association between matriptase and its substrate prostasin in breast cancer. J. Cell Physiol. 227: 1604-1609.   DOI
47 Cheng M-F, Huang M-S, Lin C-S, Lin L-H, Lee H-S, Jiang J-C, et al. 2014. Expression of matriptase correlates with tumour progression and clinical prognosis in oral squamous cell carcinoma. Histopathology 65: 24-34.   DOI
48 Vergnolle N. 2016. Protease inhibition as new therapeutic strategy for GI diseases. Gut 65: 1215-1224.   DOI
49 Korsincsky ML, Clark RJ, Craik DJ. 2005. Disulfide bond mutagenesis and the structure and function of the head-totail macrocyclic trypsin inhibitor SFTI-1. Biochemistry 44: 1145-1153.   DOI
50 de Veer SJ, Wang CK, Harris JM, Craik DJ, Swedberg JE. 2015. Improving the selectivity of engineered protease inhibitors: optimizing the P2 prime residue using a versatile cyclic peptide library. J. Med. Chem. 58: 8257-8268.   DOI
51 Loeffler M, Le'Negrate G, Krajewska M , Reed JC. 2007. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc. Natl. Acad. Sci. USA 104: 12879-12883.   DOI
52 Fu W, Lan H, Li S, Han X, Gao T, Ren D. 2008. Synergistic antitumor efficacy of suicide/ePNP gene and 6-methylpurine 2'-deoxyribosede via Salmonella against murine tumors. Cancer Gene Therapy 15: 474-484.   DOI
53 King I, Ittensohn M, Bermudes D. 2009. Tumor-targeted Salmonella typhimurium over-expressing cytosine deaminase: a novel, tumor-selective therapy. Methods Mol. Biol. 542: 649-659.
54 Chen G, Tang B, Yan BY, Chen JX, Zhou JH, Li JH, Hua ZC. 2013. Tumor-targeting Salmonella typhimurium, a natural tool for activation of prodrug 6MEPdR and their combination therapy in murine melanoma model. Appl. Microbiol. Biotechnol. 97: 4393-4401.   DOI
55 Kim J-E, Phan T-X, Nguyen VH, Dinh-Vu H-V, Zheng JH, Yun M, et al. 2015. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1${\beta}$. Theranostics 5: 1328-1342.   DOI
56 Sorenson B, Banton K, Augustin L, Barnett S, McCullock K, Frykman N, et al. 2010. Safety and immunogenicity of Salmonella typhimurium expressing C-terminal truncated human IL-2 in a murine model. Biologics 4: 61-73.
57 Loeffler M, Le'Negrate G, Krajewska M , Reed JC. 2009. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol. Immunother. 58: 769-775.   DOI
58 Loeffler M, Le'Negrate G, Krajewska M, Reed JC. 2008. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther. 15: 787-794.   DOI
59 Yoon WS, Chae YS, Hong J, Park YK. 2011. Antitumor therapeutic effects of a genetically engineered Salmonella typhimurium harboring TNF-${\alpha}$ in mice. Appl. Microbiol. Biotechnol. 89: 1807-1819.   DOI
60 Avrutina O, Fitter H, Glotzbach B, Kolmar H, Empting M. 2012. Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redoxstable SFTI-1 variants at near physiological pH. Org. Biomo. Chem. 10: 7753-7762.   DOI
61 Amann E, Ochs B, Abel KJ. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315.   DOI
62 Zhang G, Brokx S, Weiner JH. 2006. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat. Biotechnol. 24: 100-104.   DOI
63 Edwards D, Hoyer-Hansen G, Blasi F, Sloane BF (Eds), 2009. pp. 926. The Cancer Degradome. Springer Science and Business Media, New York, NY.
64 Eggers CT, Murray IA, Delmar VA, Day GA, Craik CS. 2004. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem. J. 379: 107-118.   DOI
65 Tsai SP, Hartin RJ, Ryu J-I. 1989. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol. 135: 2561-2567.
66 Broadway KM, Modise T, Jensen RV, Scharf BE. 2014. Complete genome sequence of Salmonella enterica serotype Typhimurium VNP20009, engineered for tumor targeting. J. Biotechnol. 20;192Pt A:177-178.
67 O'Callaghan D, Charbit. 1990. High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol. Gen. Genet. 223: 156-158.   DOI
68 Hoover DM, Lubkowski J. 2002. DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30: e43.   DOI
69 Morales M, Attai H, Troy K, Bermudes D. 2014. Accumulation of single-stranded DNA in Escherichia coli carrying the colicin plasmid pColE3-CA38. Plasmid 77: 7-16.
70 Fittler K, Avrutina O, Empting M, Kolmar H. 2014. Potent inhibitors of human matriptase-1 based on the scaffold of sunflower trypsin inhibitor. J. Peptide Sci. 20: 415-420.   DOI
71 Jose J, Meyer TF. 2007. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol. Mol. Biol. Rev. 71: 600-619.   DOI
72 Jia H, Li Y, Zhao T, Li X, Hu J, Yin D, et al. 2012. Antitumor effects of Stat3-siRNA and endostatin combined therapies, delivered by attenuated Salmonella, on orthotopically implanted hepatocarcinoma. Cancer Immunol. Immunother. 61: 1977-1987.   DOI
73 Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE. 2007. Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresour. Technol. 98: 2942-2948.   DOI
74 Miratis Sulthoniyah ST, Hardoko, Nursyam H. 2015. Characterization of extracellular protease lactic acid bacteria from shrimp paste. J. Life Sci. Biomed. 5: 01-05.
75 Kliche T, Li B, Bockelmann W, Habermann D, Klempt M, de Vrese M, et al. 2017. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl. Microbiol. Biotechnol. 101: 7621-7633.   DOI
76 Ganai S, Arenas RB, Forbes NS. 2009. Tumor-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br. J. Cancer. 101: 1683-1691.   DOI
77 Lee, C-H, Wu C-L, Shiau A-L. 2004. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 6: 1382-1393.   DOI
78 Lee, C-H, Wu C-L, Shiau A-L. 2005. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12: 175-184.   DOI
79 Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JD, Blazar BR, et al 2012. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res. 72: 6447-6456.   DOI
80 Manuel ER, Chen J, D'Apuzzo M, Lampa MG, Kaltcheva TI, Thompson CB, et al. 2015. Salmonella-based therapy targeting indoleamine 2,3-digoxygenase coupled with enzymatic depletion of tumor hyaluronan induces complete regression of aggressive pancreatic tumors. Cancer Immunol. Res. 3: 1096-1107.   DOI
81 Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 65: 363-372.   DOI
82 Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y, et al. 2007. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67: 5859-5864.   DOI
83 Rascón AA, Gearin J, Isoe J, and Miesfeld RL. 2011. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the dengue vector mosquito Aedes aegypti. BMC Biochem. 12: 43.   DOI
84 Snoek-van Beurden PAM, Von den Hoff JW. 2005. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques. 38: 73-83.   DOI
85 Le QT, Katunuma N. Detection of protease inhibitors by a reverse zymography method, performed in a tris(hydroxymethyl) aminomethane-tricine buffer system. Anal. Biochem. 324: 237-240.
86 Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.   DOI
87 Wessler S, Schneider G, Backert S. 2017. Bacterial serine protease HtrA as a promising new target for antimicrobial therapy. Cell Commun. Signal. 15: 4.   DOI
88 Prehna G, Zhang G, Gong X, Duszyk M, Okon M, McIntosh LP, et al. 2012 A protein export pathway involving Escherichia coli porins. Structure 20: 1154-1166.   DOI
89 Sabeh F, Shimizu-Hirota R, Weiss SJ. 2009. Protease-dependent versus -independent cancer cell invasion programs: threedimensional amoeboid movement revisited. J. Cell Biol. 185: 11-19.   DOI
90 Quintero D and Bermudes D. 2014. A culture-based method for determining the production of secreted protease inhibitors. J. Micro. Methods 100: 105-110.   DOI