• Title/Summary/Keyword: acetylcholine receptor

Search Result 182, Processing Time 0.018 seconds

Mechanisms of Motility Change on Trinitrobenzenesulfonic Acid-Induced Colonic Inflammation in Mice

  • Cheon, Gab Jin;Cui, Yuan;Yeon, Dong-Soo;Kwon, Seong-Chun;Park, Byong-Gon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.437-446
    • /
    • 2012
  • Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to $Ca^{2+}$ and $Na^+$ influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control.

The effect of curcumin on blood pressure and cognitive impairment in spontaneously hypertensive rats

  • Ji Young Lim;Wookyoung Kim;Ae Wha Ha
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.192-205
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: It is known that the renin-angiotensin system (RAS) in the brain could regulate cognitive functions as well as blood pressure. Inhibition of RAS for the improvement of cognitive function may be a new strategy, but studies so far have mostly reported on the effects of RAS inhibition by drugs, and there is no research on cognitive improvement through RAS inhibition of food ingredients. Therefore, this study investigated the effect of curcumin on blood pressure and cognitive function and its related mechanism in spontaneously hypertensive rat/Izm (SHR/Izm). MATERIALS/METHODS: Six-week-old SHR/Izm rats were divided into 5 groups: control group (CON), scopolamine group (SCO, drug for inducing cognitive deficits), positive control (SCO and tacrine [TAC]), curcumin 100 group (CUR100, SCO + Cur 100 mg/kg), and curcumin 200 group (CUR200, SCO + Cur 200 mg/kg). Changes in blood pressure, RAS, cholinergic system, and cognitive function were compared before and after cognitive impairment. RESULTS: The SCO group showed increased blood pressure and significantly reduced cognitive function based on the y-maze and passive avoidance test. Curcumin treatments significantly improved blood pressure and cognitive function compared with the SCO group. In both the CUR100 and CUR200 groups, the mRNA expressions of angiotensin-converting enzyme (ACE) and angiotensin II receptor type1 (AT1), as well as the concentrations of angiotensin II (Ang II) in brain tissue were significantly decreased. The mRNA expression of the muscarinic acetylcholine receptors (mAChRs) and acetylcholine (ACh) content was significantly increased, compared with the SCO group. CONCLUSIONS: The administration of curcumin improved blood pressure and cognitive function in SCO-induced hypertensive mice, indicating that the cholinergic system was improved by suppressing RAS and AT1 receptor expression and increasing the mAChR expression.

알츠하이머병(Alzheimer's disease)의 신약개발을 위한 5-HT6 serotonin 수용체의 구조 예측 및 리간드 다킹(docking) 연구

  • Kim, Hyeon-Gyeong;Jo, Eun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.46-53
    • /
    • 2017
  • 알츠하이머병은 치매를 유발하는 가장 주된 원인 질환으로 환자들은 인지장애를 겪게 된다. 현재 치료약으로 사용되는 약으로는 acetylcholinesterase 저해재가 있지만 이 약들의 효과는 미비하다. 그래서 인지기능에 영향을 미친다고 알려진 신경전달물질인 GABA, Glutamate, acetylcholine의 수치를 조절 할 수 있는 $5-HT_6$ receptor antagonist가 현재 개발되고 있다. 현재 여러 antagonist들이 임상실험 되었고, 인지 능력향상에 효과를 보이고 있다. 그러나, $5-HT_6$ receptor의 구조가 밝혀지지 않아 아직 원자적 수준의 결합 분석이 이루어지지 않았으므로 이 부분에 대한 연구가 필요하다. 따라서 본 연구에서는 Homology modeling을 통해 receptor의 구조를 예측하고, 현재 임상실험 중인 antagonist들 중 7개를 docking을 통해 단백질과 리간드의 결합을 예측하였다. Edison에서 Galaxy TBM과 Galaxy Refine을 사용하여 Homology modeling 한 결과 GPCR의 전형적인 모델에 특징적으로 긴 cterminal을 가졌다는 것을 확인 할 수 있었다. 생성된 구조를 가지고 Edison의 Dock 프로그램으로 7개의 antagonist가 어떠한 결합을 하는지 분석하였다. 그 결과, binding pose에 공통적으로 Trp102, Asp106, Val107, Pro177, Phe188, Val189, Ala192, Phe284, Phe285, Asn288, Thr306, Tyr310이 관여하는 것을 docking을 통해 알 수 있었다. 특히, Phe285는 7개의 antagonist 중에 4개와의 interaction을 하고 있는 것을 관찰하였다. 이 연구를 통하여 $5-HT_6$에 효과적으로 결합하여 치료효과를 낼 수 있는 신약을 개발할 수 있다.

  • PDF

Behavioral Sensitization and M1 Muscarinic Acetylcholine Receptor mRNA Expression in Methamphetamine-Administered Mice

  • Kim, Kyung-In;Cho, Jae-Han;Park, Hyun-Jung;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2004
  • Repeated administration of psychostimulants such as amphetamines increases locomotor activity in rodents. These drugs, including methamphetamine, enhance dopaminergic neurotransmission and result in hyper-locomotion and behavioral sensitization. It is well known that the existence of a complex balance between the cholinergic and dopaminergic systems in the central nervous system. Thus, behavioral sensitization by methamphetamine may be related to the expression of the M1 muscarinic acetylcholine receptors gene. The present study investigated the changes of M1R mRNA in hyperlocomotor activity and behavioral sensitization by methamphetamine (2 mg/kg) in mice. Our results showed that M1R mRNA expression was increased in the frontal cortex and the hippocampus region (the CA2 region) in the acute methamphetamine administered group compared to the saline administered group. In the chronic group, M1R mRNA expression was increased in the frontal cortex ill1d the hippocampus regions (CA2 and DG regions) in melt1amphetamine administered group compared to saline control group. These results indicate that acute or chronic treatment of mathamphetamine leads to the region-specific changes in mRNA expression levels of M1R. Therefore, Therefore, the present result suggests that M1R may play a role in modulating of methamphetamine-induced behavioral sensitization in mice.

Cholinergic contraction to the perivascular nerve stimulation on the isolated coronary artery of pig (돼지 적출 심관상동맥에 있어서 perivascular nerve stimulation에 의한 cholinergic 수축 작용)

  • Shim, Cheol-soo;Park, Sang-eun;Jeon, Seok-cheol;Han, Bang-keun;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.237-243
    • /
    • 1995
  • The effects of various autonomic blocking agents to perivascular nerve stimulation were investigated on isolated coronary artery of pig. 1. The magnitude of contractile response to perivascular nerve stimulation increased with increasing frequency(280Hz) of stimulation. 2. The contractions to perivascular nerve stimulation(40V, 40Hz, 0.5msec, 1min) were increased by pretreatment of the cholinestrase inhibitor, physostigmine. 3. The contraction to perivascular nerve stimulation(40V, 40Hz, 0.5msec, 1min) was antagonised by the muscarinic antagonist, atropine. 4. The contraction to perivascular nerve stimulation(40V, 40Hz, 0.5msec, 1min) was blocked by the neural blocker, tetrodotoxin. 5. The contractions to perivascular nerve stimulation(40V, 40Hz, 0.5msec, 1min) were not significantly affected by the ${\alpha}$-adrenergic antagonist, phentolamine or ${\beta}$-adrenergic antagonist, propranolol. 6. The contractile response by the acetylcholine was increased by the pretreatment of cholinestrase inhibitor, physostigmine. This findings suggest that the powerful excitatory action by the perivascular nerve stimulation may be linked to muscarinic receptor by cholinergic nerve excitation in coronary artery of pig.

  • PDF

Ginseng and ion channels: Are ginsenosides, active component of Panax ginseng, differential modulator of ion channels?

  • Jeong, Sang-Min;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as $Ca^{2+},\;K^+,\;Na^+,\;Cl^-$, or ligand gated ion channels (i.e. $5-HT_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent $Ca^{2+},\;K^+,\;and\;Na^+$ channels, whereas ginsenosides activate $Ca^{2+}-activated\;Cl^-\;and\;Ca^{2+}-activated\;K^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as $5-HT_3$, nicotinic acetylcholine, and NMDA receptors. This review will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities and will further expand the possibilities how these ginsenoside-induced ion channel regulations are coupled to biological effects of Panax ginseng.

Melatonin inhibits nicotinic acetylcholine receptor functions in bovine chromaffin cells

  • Jo, Su-Hyun;Lee, Seung-Hyun;Kim, Kyong-Tai;Choi, Se-Young
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.50-54
    • /
    • 2019
  • Melatonin is a neurotransmitter that modulates various physiological phenomena including regulation and maintenance of the circadian rhythm. Nicotinic acetylcholine receptors (nAChRs) play an important role in oral functions including orofacial muscle contraction, salivary secretion, and tooth development. However, knowledge regarding physiological crosstalk between melatonin and nAChRs is limited. In the present study, the melatonin-mediated modulation of nAChR functions using bovine adrenal chromaffin cells, a representative model for the study of nAChRs, was investigated. Melatonin inhibited the nicotinic agonist dimethylphenylpiperazinium (DMPP) iodide-induced cytosolic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) increase and norepinephrine secretion in a concentration-dependent manner. The inhibitory effect of melatonin on the DMPP-induced $[Ca^{2+}]_i$ increase was observed when the melatonin treatment was performed simultaneously with DMPP. The results indicate that melatonin inhibits nAChR functions in both peripheral and central nervous systems.

Mechanism of Acetylcholine-induced Endothelium-dependent Relaxation in the Rabbit Carotid Artery by M3-receptor Activation

  • Song, Yong-Jin;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.313-317
    • /
    • 2004
  • The present study were designed to characterize the action mechanisms of acetylcholine (ACh)-induced endothelium-dependent relaxation in arteries precontracted with high $K^+$(70 mM). For this, we simultaneously measured both muscle tension and cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$, using fura-2, in endothelium-intact, rabbit carotid arterial strips. In the artery with endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension whereas ACh $(10{\mu}M)$ significantly relaxed the muscle and increased $[Ca^{2+}]_i$. In the presence of $N^G$-nitro-L-arginine (L-NAME, 0.1 mM), ACh increased $[Ca^{2+}]_i$ without relaxing the muscle. In the artery without endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension although ACh was ineffective. 4-DAMP (10 nM) or atropine $(0.1{\mu}M)$ abolished ACh-induced increase in $[Ca^{2+}]_i$ and relaxation. The increase of $[Ca^{2+}]_i$ and vasorelaxation by ACh was siginificantly reduced by either $3{\mu}M$ gadolinium, $10{\mu}M$ lanthanum, or by $10{\mu}M$ SKF 96365. These results suggest that in rabbit carotid artery, ACh-evoked relaxation of 70 mM $K^+$-induced contractions appears to be mediated by the release of NO. ACh-evoked vasorelaxation is mediated via the $M_3$ subtype, and activation of the $M_3$ subtype is suggested to stimulate nonselective cation channels, leading to increase of $[Ca^{2+}]_i$ in endothelial cells.

Molecular docking study on the α3β2 neuronal nicotinic acetylcholine receptor complexed with α-Conotoxin GIC

  • Lee, Che-Wook;Lee, Si-Hyung;Kim, Do-Hyoung;Han, Kyou-Hoon
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.275-280
    • /
    • 2012
  • Nicotinic acetylcholine receptors (nAChRs) are a diverse family of homo- or heteropentameric ligand-gated ion channels. Understanding the physiological role of each nAChR subtype and the key residues responsible for normal and pathological states is important. ${\alpha}$-Conotoxin neuropeptides are highly selective probes capable of discriminating different subtypes of nAChRs. In this study, we performed homology modeling to generate the neuronal ${\alpha}3$, ${\beta}2$ and ${\beta}4$ subunits using the x-ray structure of the ${\alpha}1$ subunit as a template. The structures of the extracellular domains containing ligand binding sites in the ${\alpha}3{\beta}2$ and ${\alpha}3{\beta}4$ nAChR subtypes were constructed using MD simulations and ligand docking processes in their free and ligand-bound states using ${\alpha}$-conotoxin GIC, which exhibited the highest ${\alpha}3{\beta}2$ vs. ${\alpha}3{\beta}4$ discrimination ratio. The results provide a reasonable structural basis for such a discriminatory ability, supporting the idea that the present strategy can be used for future investigations on nAChR-ligand complexes.

Effects of ${\gamma}-Aminobutyric$ Acid on Intrinsic Cholinergic Action in Exocrine Secretion of Isolated, Perfused Rat Pancreas

  • Park, Yong-Deuk;Park, Hyung-Seo;Cui, Zheng-Yun;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • ${\gamma}$-Aminobutyric acid (GABA) has been reported to enhance exocrine secretion evoked not only by secretagogues but also by intrinsic neuronal excitation in the pancreas. The pancreas contains cholinergic neurons abundantly that exert a stimulatory role in exocrine secretion. This study was undertaken to examine effects of GABA on an action of cholinergic neurons in exocrine secretion of the pancreas. Intrinsic neurons were excited by electrical field stimulation (EFS; 15 V, 2 msec, 8 Hz, 45 min) in the isolated, perfused rat pancreas. Tetrodotoxin or atropine was used to block neuronal or cholinergic action. Acetylcholine was infused to mimic cholinergic excitation. GABA $(30{\mu}M)$ and muscimol $(10{\mu}M)$, given intra-arterially, did not change spontaneous secretion but enhanced cholecystokinin (CCK; 10 pM)-induced secretions of fluid and amylase. GABA (3, 10, $30{\mu}M$) further elevated EFS-evoked secretions of fluid and amylase dose-dependently. GABA (10, 30, $100{\mu}M$) also further increased acetylcholine $(5{\mu}M)$-induced secretions of fluid and amylase in a dose-dependent manner. Bicuculline $(10{\mu}M)$ effectively blocked the enhancing effects of GABA $(30{\mu}M)$ on the pancreatic secretions evoked by either EFS or CCK. Both atropine $(2{\mu}M)$ and tetrodotoxin $(1{\mu}M)$ markedly reduced the GABA $(10{\mu}M)$-enhanced EFS- or CCK-induced pancreatic secretions. The results indicate that GABA enhances intrinsic cholinergic neuronal action on exocrine secretion via the $GABA_A$ receptors in the rat pancreas.