
Introduction

Melatonin is a neurotransmitter that exhibits various physi-

ological functions ranging from circadian rhythm regulation 

to cancer cell metabolism [1,2]. Mainly synthesized from 5- 

hydroxytryptamine through serotonin N-acetyltransferase in 

the pineal gland, melatonin is secreted based on circadian 

rhythm and regulates whole body rhythmicity [3]. Melatonin 

also participates in cell protection in conditions such as isch-

emia by blocking cell death and inhibiting autophagy [4,5]. The 

cell-protective role of melatonin has been considered to occur 

when high concentrations of melatonin act as antioxidants. 

Recently, crosstalk between melatonin and other signaling 

substances has been observed mainly in the central nervous 

system [6,7].

Nicotinic acetylcholine receptors (nAChRs) are expressed 

in several oral tissues including submandibular ganglion cells 

[8], gingival epithelial cells [9], gingival keratinocytes [10], and 

gingival fibroblasts [11]. nAChRs have also been implicated 

in the development of maxillofacial skeletal muscle [12] and 

ameloblasts [13]. Therefore, crosstalk between melatonin 

and nAChRs is a subject of interest. However, how melatonin 

modulates nAChR functions remains unclear. Thus, under-

standing the mechanism of nAChR inhibition by melatonin is 
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important for understanding the neuroprotective role of mela-

tonin.

In this study, the effects of melatonin on neurotransmitter 

secretion by nAChRs were investigated in a peripheral nervous 

system model in which the nAChR acts as an excitatory neu-

rotransmitter. Subsequently, bovine adrenal chromaffin cells 

with a nAChR-mediated neurotransmitter secretion system 

were used. Chromaffin cells act as postganglionic cells that 

secrete norepinephrine by receiving preganglionic cholinergic 

inputs from sympathetic systems [14]. Thus, the neurotrans-

mitter secretion modulated by nAChRs has been intensively 

studied using chromaffin cells [15,16]. In the present study, 

crosstalk between melatonin and nAChRs was investigated to 

understand the peripheral neuromodulating effects of melato-

nin.

Materials and Methods 

1. Materials 

Melatonin, dimethylphenylpiperazinium (DMPP), and sulfin-

pyrazone were obtained from Sigma-Aldrich (St. Louis, MO, 

USA). Fura-2 pentaacetoxymethyl ester (Fura-2/AM) was 

purchased from Molecular Probes (Eugene, OR, USA). [3H]

Norepinephrine was purchased from PerkinElmer NEN (Bos-

ton, MA, USA). DMEM/F-12 and penicillin/streptomycin were 

purchased from GIBCO (Grand Island, NY, USA). Bovine calf 

serum and horse serum were obtained from HyClone (Logan, 

UT, USA). 

2. Chromaffin cell preparation

Chromaffin cells were isolated from bovine adrenal medulla 

using the two-step collagenase digestion as previously de-

scribed [17,18]. For the [3H]norepinephrine secretion assay, 

isolated bovine chromaffin cells were plated in 6-well plates at 

a density of 5 × 105 cells per well. For the cytosolic free Ca2+ 

concentration ([Ca2+]i) measurement, cells were transferred to 

100-mm culture dishes (1 × 107 cells per dish). The cells were 

maintained in DMEM/F-12 containing 10% bovine calf serum 

and 1% penicillin/streptomycin. The cells were incubated in a 

humidified atmosphere of 95% room air and 5% CO2. The cul-

ture medium was changed every three days. 

3. Measurement of [3H]norepinephrine secretion

[3H]norepinephrine secretion from chromaffin cells was mea-

sured as previously described [18]. In brief, cells were loaded 

with [3H]norepinephrine (1 µCi/mL) in DMEM/F-12 for 1 hour 

at 37℃ in a humidified atmosphere of 95% room air and 5% 

CO2. The cells were incubated in Locke’s solution (154 mmol/L 

NaCl, 5.6 mmol/L KCl, 10 mmol/L glucose, 2.2 mmol/L CaCl2, 

1.2 mmol/L MgCl2, and 5 mmol/L HEPES buffer adjusted to 

pH 7.4) to measure the basal secretion. The cells were stimu-

lated with DMPP for 15 minutes and the medium was used 

to analyze the secreted [3H]norepinephrine. Residual/total [3H]

norepinephrine was extracted by adding 10% trichloroacetic 

acid. The radioactivity was measured using a scintillation coun-

ter. The amount of [3H]norepinephrine secreted was calculated 

as the percentage of total [3H]norepinephrine content.

4. Free Ca2+ concentration measurement 

The [Ca2+]i was determined using the fluorescent Ca2+ in-

dicator Fura-2/AM, as previously reported [19]. Briefly, the 

bovine chromaffin cell suspension was incubated in serum-

free DMEM/F-12 media with 4 µM Fura-2/AM for 60 minutes 

at 37℃ under continuous stirring. Sulfinpyrazone (250 µM) was 

added to all solutions to prevent Fura-2 leakage. Fluorescence 

ratios were monitored with dual excitation at 340 and 380 nm 

and emission at 500 nm. Calibration of the fluorescent signal in 

terms of [Ca2+]i was performed [20] using the following equa-

tion:

[Ca2+]i = KD[(R – Rmin)/(Rmax – R)](Sf2/Sb2) 

where R is the ratio of fluorescence emitted by excitation at 

340 and 380 nm. Sf2 and Sb2 are the proportionality coefficients 

at 380 nm excitation of Ca2+-free Fura-2 and Ca2+-saturated 

Fura-2, respectively. Rmin, the minimal fluorescence ratio, was 

measured at a condition of 4 mmol/L EGTA, 30 mmol/L Trizma 

base, and 0.1% Triton X-100. Then Rmax, the maximal fluores-

cence ratio, was measured at a condition of 10 mmol/L Ca2+. 

5. Data analysis 

All quantitative data are expressed as means ± standard 

error of the mean. Data were analyzed using Origin software 

(Origin Lab, Northampton, MA, USA). The results were ana-

lyzed using the unpaired Student’s t-test and p ＜ 0.05 was 

considered statistically significant. 
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Results

To examine the regulation of nAChR functions in melatonin, 

first, the effects of melatonin on nAChR-induced norepineph-

rine secretion in bovine adrenal chromaffin cells were exam-

ined. The nAChR-specific agonist, DMPP, successfully induced 

the preloaded norepinephrine secretion. Preincubation with 

melatonin inhibited DMPP-mediated norepinephrine secretion 

in a concentration-dependent manner (Fig. 1).

The catecholamine secretion is triggered by elevated [Ca2+]i 

level. The effects of melatonin on DMPP-induced [Ca2+]i increase 

was investigated. DMPP evoked an increase in [Ca2+]i in Fura-

2-loaded bovine adrenal chromaffin cells. Under this condi-

tion, melatonin inhibited DMPP-induced [Ca2+]i increase in 

a concentration-dependent manner (Fig. 2). In addition, the 

inhibitory effect of DMPP-induced [Ca2+]i increase was more 

pronounced with the melatonin analogue, 2-iodomelatonin.

Next, whether melatonin acts directly on nAChRs or by ac-

tivating melatonin-specific receptors was examined. The time 

course of melatonin-mediated inhibition of DMPP-induced 

[Ca2+]i increase was investigated. Melatonin simultaneously 

suppressed the inhibition of the DMPP-induced [Ca2+]i increase 

when preincubated with melatonin for 30 seconds (Fig. 3). The 

result indicates melatonin does not require preincubation to 

exert an inhibitory effect and may directly inhibit nAChRs.

Discussion

In this study, the effect of melatonin on the regulation of 

nAChR functions was investigated to understand crosstalk 

between melatonin and nAChRs. Results showed preincuba-

tion with melatonin inhibited DMPP-mediated norepinephrine 

secretion, and melatonin inhibited DMPP-mediated [Ca2+]i in-
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Fig. 1. The effects of melatonin on [3H]norepinephrine secretion in bovine 
adrenal chromaffin cells. [3H]Norepinephrine-loaded chromaffin cells were 
treated with 20 µM dimethylphenylpiperazinium (DMPP) in the presence 
of the indicated concentrations of melatonin or vehicle. The secreted [3H]
norepinephrine is expressed as % of total [3H]norepinephrine. Each point 
is the mean ± standard error of the mean (n = 3). 
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Fig. 2. Melatonin inhibits DMPP-evoked [Ca2+]i increase in bovine adrenal 
chromaffin cells. Fura-2-loaded cells were treated with 20 µM DMPP in the 
presence of the indicated concentrations of melatonin, 2-iodomelatonin, or 
vehicle. Peak levels of DMPP-induced Ca2+ influx were quantitatively ana-
lyzed and depicted as % of the DMPP-induced [Ca2+]i increase. Each point 
is the mean ± standard error of the mean (n = 3–5).
DMPP, dimethylphenylpiperazinium; [Ca2+]i, free Ca2+ concentration.
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Fig. 3. Time course of melatonin-mediated inhibition of DMPP-evoked 
[Ca2+]i increase. Fura-2-loaded cells were treated with 20 µM DMPP after 
preincubation with 3 µM melatonin, or vehicle, for the indicated time. Peak 
levels of DMPP-induced Ca2+ influx were quantitatively analyzed and de-
picted as % of the DMPP-induced [Ca2+]i increase. Each point is the mean 
± standard error of the mean (n = 3–6).
DMPP, dimethylphenylpiperazinium; [Ca2+]i, free Ca2+ concentration.
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crease in bovine adrenal chromaffin cells.

Melatonin controls cell functions in various ways. Crosstalk 

between melatonin and nAChRs can be divided into the fol-

lowing two types: (1) Melatonin directly inhibits nAChRs. Mela-

tonin has direct binding affinity to nAChRs in the noradrenergic 

nerve terminal of rat vas deferens [21] and guinea pig submu-

cous plexus [22]. In addition, melatonin was shown to exert a 

neuroprotective effect by inhibiting alpha-7 nAChR in organo-

typical hippocampal cultures [23]. (2) Melatonin modulates via 

melatonin-specific G protein-coupled receptors. In general, 

similar to amino acid derivative neurotransmitters, melatonin 

activates melatonin-specific G protein-coupled receptors, MT1 

and MT2 [24]. In cerebellar granule cells, picomolar melatonin 

inhibited nAChR-mediated cation current through MT1 and 

MT2 receptors [25]. However, the detailed mechanism of how 

melatonin regulates other components, including the peripher-

al nervous system, remains unclear. Therefore, identifying mo-

lecular targets that receive the neuroactive effects of melatonin 

is important to better understand the effects of complex and 

diverse functions of melatonin. In the present study, the dose 

curve and time course of the inhibitory effects of melatonin 

on melatonin-induced [Ca2+]i increase was investigated, and 

results showed inhibition was in a relatively high concentration 

range within a very short time period (i.e. within several sec-

onds). These results indicate the melatonin-mediated nAChR 

inhibition in chromaffin cells may be caused by a direct inhibi-

tion independent of G protein-coupled receptors. This direct 

action was observed in other mechanistic effects of melatonin, 

and we recently showed the voltage-sensitive calcium chan-

nels inhibitory effect of melatonin acts in a melatonin-specific 

receptor-independent manner [26].

nAChRs are expressed in submandibular ganglion cells and 

regulate salivary secretion [8]. In addition, nAChRs are ex-

pressed in maxillofacial skeletal myocytes to regulate tensile 

stress [12]. In particular, the nAChRs present in ameloblasts 

are involved in enamel formation by differential expression 

during the tooth morphogenesis stage [13]. Therefore, the ef-

fect of melatonin on oral functions is very important in dental 

science. Recently, neuromodulation of nAChRs in the central 

nervous system has received much clinical attention. Choline 

esterase inhibitors, which block the degradation of acetyl-

choline and increase its concentration, have been shown to 

improve cognitive function in Alzheimer’s disease and mild 

cognitive impairment; nAChRs play an important role in this 

mechanism [6,27]. Therefore, the results from this study will 

not only contribute to a better understanding of the physiology 

of melatonin and nAChRs, but also reaffirm the possibility for 

various clinical applications of melatonin as a nAChR modula-

tor.
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