DOI QR코드

DOI QR Code

Molecular docking study on the α3β2 neuronal nicotinic acetylcholine receptor complexed with α-Conotoxin GIC

  • Lee, Che-Wook (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Si-Hyung (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Do-Hyoung (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Kyou-Hoon (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2011.11.17
  • Accepted : 2012.01.11
  • Published : 2012.05.31

Abstract

Nicotinic acetylcholine receptors (nAChRs) are a diverse family of homo- or heteropentameric ligand-gated ion channels. Understanding the physiological role of each nAChR subtype and the key residues responsible for normal and pathological states is important. ${\alpha}$-Conotoxin neuropeptides are highly selective probes capable of discriminating different subtypes of nAChRs. In this study, we performed homology modeling to generate the neuronal ${\alpha}3$, ${\beta}2$ and ${\beta}4$ subunits using the x-ray structure of the ${\alpha}1$ subunit as a template. The structures of the extracellular domains containing ligand binding sites in the ${\alpha}3{\beta}2$ and ${\alpha}3{\beta}4$ nAChR subtypes were constructed using MD simulations and ligand docking processes in their free and ligand-bound states using ${\alpha}$-conotoxin GIC, which exhibited the highest ${\alpha}3{\beta}2$ vs. ${\alpha}3{\beta}4$ discrimination ratio. The results provide a reasonable structural basis for such a discriminatory ability, supporting the idea that the present strategy can be used for future investigations on nAChR-ligand complexes.

Keywords

References

  1. Corringer, P. J., Novere, N. L. and Changeux, J. P. (2000) Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431-458. https://doi.org/10.1146/annurev.pharmtox.40.1.431
  2. Arias, H. R. (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem. Int. 36, 595-645. https://doi.org/10.1016/S0197-0186(99)00154-0
  3. Paterson, D. and Nordberg, A. (2000) Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 61, 75-111. https://doi.org/10.1016/S0301-0082(99)00045-3
  4. Myers, R. A., Cruz, L. J., Rivier, J. E. and Olivera, B. M. (1993) Conus peptides as chemical probes for receptors and ion channels. Chem. Rev. 93, 1923-1936. https://doi.org/10.1021/cr00021a013
  5. Hu, S.-H., Gehrmann, J., Alewood, P. F., Craik, D. J. and Martin, J. L. (1997) Crystal structure at 1.1 Å resolution of $\alpha$-conotoxin PnIB: Comparison with $\alpha$-conotoxins PnIA and GI. Biochemistry 36, 11323-11330. https://doi.org/10.1021/bi9713052
  6. McIntosh, J. M., Dowell, C., Watkins, M., Garrett, J. E., Yoshikami, D. and Olivera, B. M. (2002) $\alpha$-Conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J. Biol. Chem. 277, 33610-33615. https://doi.org/10.1074/jbc.M205102200
  7. Martinez, J. S., Olivera, B. M., Gray, W. R., Craig, A. G., Groebe, D. R., Abramson, S. N. and McIntosh, J. M. (1995). $\alpha$-Conotoxin EI, A new nicotinic acetylcholine receptor antagonist with novel selectivity. Biochemistry 34, 14519-14526. https://doi.org/10.1021/bi00044a030
  8. Lopez-Vera, E., Aguilar, M. B., Schiavon, E., Marinzi, C., Ortiz, E., Restano Cassulini, R., Batista, C. V. F., Possani, L. D., Heimer de la Cotera, E. P., Peri, F., Becerril, B. and Wanke, E. (2007) Novel $\alpha$-conotoxins from Conus spurius and the $\alpha$-conotoxin EI share high-affinity potentiation and low-affinity inhibition of nicotinic acetylcholine receptors. FEBS J. 274, 3972-3985. https://doi.org/10.1111/j.1742-4658.2007.05931.x
  9. McIntosh, J. M., Plazas, P. V., Watkins, M., Gomez-Casati, M. E., Olivera, B. M. and Elgoyhen, A. B. (2005) A novel $\alpha$-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between rat ${\alpha}9{\alpha}10$ and ${\alpha}7$ nicotinic cholinergic receptors. J. Biol. Chem. 280, 30107-30112. https://doi.org/10.1074/jbc.M504102200
  10. López-Vera, E., Jacobsen, R. B., Ellison, M., Olivera, B. M. and Teichert, R. W. (2007) A novel alpha conotoxin ($\alpha$-PIB) isolated from C. purpurascens is selective for skeletal muscle nicotinic acetylcholine receptors. Toxicon. 49, 1193-1199. https://doi.org/10.1016/j.toxicon.2007.02.007
  11. Sandall, D. W., Satkunanathan, N., Keays, D. A., Polidano, M. A., Liping, X., Pham, V., Down, J. G., Khalil, Z., Livett, B. G. and Gayler, K. R. (2003) A novel $\alpha$-conotoxin Identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 6904-6911. https://doi.org/10.1021/bi034043e
  12. Cartier, G. E., Yoshikami, D., Gray, W. R., Luo, S., Olivera, B. M. and McIntosh, J. M. (1996) A new $\alpha$-conotoxin which targets 32 nicotinic acetylcholine receptors. J. Biol. Chem. 271, 7522-7528. https://doi.org/10.1074/jbc.271.13.7522
  13. Gray, W. R., Luque, A., Olivera, B. M., Barrett, J. and Cruz, L. J. (1981) Peptide toxins from Conus geographus venom. J. Biol. Chem. 256, 4734-4740.
  14. Chi, S.-W., Kim, D.-H., Olivera, B. M., McIntosh, J. M. and Han, K.-H. (2004) Solution conformation of alpha-conotoxin GIC, a novel potent antagonist of ${\alpha}3{\beta}2$ nicotinic acetylcholine receptors. Biochem. J. 380, 347-352. https://doi.org/10.1042/BJ20031792
  15. Chi, S.-W., Lee, S.-H., Kim, D.-H., Kim, J.-S., Olivera, B. M., McIntosh, J. M. and Han, K.-H. (2005) Solution structure of $\alpha$-conotoxin PIA, a novel antagonist of $\alpha$6 subunit containing nicotinic acetylcholine receptors. Biochem. Biophys. Res. Commun. 338, 1990-1997. https://doi.org/10.1016/j.bbrc.2005.10.176
  16. Chi, S.-W., Park, K.-H., Suk, J.-E., Olivera, B. M., McIntosh, J. M. and Han, K.-H. (2003) Solution conformation of $\alpha$A-conotoxin EIVA, a potent neuromuscular nicotinic acetylcholine receptor antagonist from Conus ermineus. J. Biol. Chem. 278, 42208-42213. https://doi.org/10.1074/jbc.M303342200
  17. Han, K.-H., Hwang, K.-J., Kim, S.-M., Kim, S.-K., Gray, W. R., Olivera, B. M., Rivier, J. and Shon, K.-J. (1997) NMR structure determination of a novel conotoxin, [Pro 7,13] $\alpha$A-conotoxin PIVA. Biochemistry 36, 1669-1677. https://doi.org/10.1021/bi962301k
  18. Hu, S.-H., Loughnan, M., Miller, R., Weeks, C. M., Blessing, R. H., Alewood, P. F., Lewis, R. J. and Martin, J. L. (1998) The 1.1 Å resolution crystal structure of [Tyr15]EpI, a novel $\alpha$-conotoxin from Conus episcopatus, solved by direct methods. Biochemistry 37, 11425-11433. https://doi.org/10.1021/bi9806549
  19. Park, K.-H., Suk, J.-E., Jacobsen, R., Gray, W. R., McIntosh, J. M. and Han, K.-H. (2001) Solution conformation of $\alpha$-conotoxin EI, a neuromuscular toxin specific for the ${\alpha}1/\delta$ subunit interface of torpedo nicotinic acetylcholine receptor. J. Biol. Chem. 276, 49028-49033. https://doi.org/10.1074/jbc.M107798200
  20. Shon, K.-J., Koerber, S. C., Rivier, J. E., Olivera, B. M. and McIntosh, J. M. (1997) Three-dimensional solution structure of $\alpha$-conotoxin MII, an ${\alpha}3{\beta}2$ neuronal nicotinic acetylcholine receptor- targeted ligand. Biochemistry 36, 15693-15700. https://doi.org/10.1021/bi971443r
  21. Cho, J.-H., Mok, K. H., Olivera, B. M., McIntosh, J. M., Park, K.-H. and Han, K.-H. (2000) Nuclear magnetic resonance solution conformation of $\alpha$-conotoxin AuIB, an ${\alpha}3{\beta}4$ subtype- selective neuronal nicotinic acetylcholine receptor antagonist. J. Biol. Chem. 275, 8680-8685. https://doi.org/10.1074/jbc.275.12.8680
  22. Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van der Oost, J., Smit, A. B. and Sixma, T. K. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269-276. https://doi.org/10.1038/35077011
  23. Celie, P. H. N., Kasheverov, I. E., Mordvintsev, D. Y., Hogg, R. C., van Nierop, P., van Elk, R., van Rossum-Fikkert, S. E., Zhmak, M. N., Bertrand, D., Tsetlin, V., Sixma, T. K. and Smit, A. B. (2005) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an $\alpha$-conotoxin PnIA variant. Nat. Struct. Mol. Biol. 12, 582-588. https://doi.org/10.1038/nsmb951
  24. Dellisanti, C. D., Yao, Y., Stroud, J. C., Wang, Z.-Z. and Chen, L. (2007) Crystal structure of the extracellular domain of nAChR $\alpha$1 bound to $\alpha$-bungarotoxin at 1.94 A resolution. Nat. Neurosci. 10, 953-962. https://doi.org/10.1038/nn1942
  25. Ulens, C., Hogg, R. C., Celie, P. H., Bertrand, D., Tsetlin, V., Smit, A. B. and Sixma, T. K. (2006) Structural determinants of selective $\alpha$-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl. Acad. Sci. U.S.A 103, 3615-3620. https://doi.org/10.1073/pnas.0507889103
  26. Grant, M. A., Gentile, L. N., Shi, Q.-L., Pellegrini, M. and Hawrot, E. (1999) Expression and spectroscopic analysis of soluble nicotinic acetylcholine receptor fragments derived from the extracellular domain of the $\alpha$-subunit. Biochemistry 38, 10730-10742. https://doi.org/10.1021/bi983007q
  27. Bren, N. and Sine, S. M. (2000) Hydrophobic pairwise interactions stabilize $\alpha$-conotoxin MI in the muscle acetylcholine receptor binding site. J. Biol. Chem. 275, 12692-12700. https://doi.org/10.1074/jbc.275.17.12692
  28. Chiara, D. C., Xie, Y. and Cohen, J. B. (1999) Structure of the agonist-binding sites of the torpedo nicotinic acetylcholine receptor: Affinity-labeling and mutational analyses identify $\gamma$Tyr-111/$\delta$Arg-113 as antagonist affinity determinants. Biochemistry 38, 6689-6698. https://doi.org/10.1021/bi9901735
  29. Quiram, P. A., McIntosh, J. M. and Sine, S. M. (2000) Pairwise interactions between neuronal $\alpha$7acetylcholine receptors and $\alpha$-conotoxin PnIB. J. Biol. Chem. 275, 4889-4896. https://doi.org/10.1074/jbc.275.7.4889
  30. Sugiyama, N., Marchot, P., Kawanishi, C., Osaka, H., Molles, B., Sine, S. M. and Taylor, P. (1998) Residues at the subunit interfaces of the nicotinic acetylcholine receptor that contribute to $\alpha$-conotoxin M1 binding. Mol. Pharmacol. 53, 787-794. https://doi.org/10.1124/mol.53.4.787
  31. Dutertre, S., Nicke, A., Tyndall, J. D. A. and Lewis, R. J. (2004) Determination of $\alpha$-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. J. Mol. Recogn. 17, 339-347. https://doi.org/10.1002/jmr.683
  32. Hansen, S. B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P. and Bourne, Y. (2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24, 3635-3646. https://doi.org/10.1038/sj.emboj.7600828
  33. Bourne, Y., Talley, T. T., Hansen, S. B., Taylor, P. and Marchot, P. (2005) Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake $\alpha$-neurotoxins and nicotinic receptors. EMBO J. 24, 1512-1522. https://doi.org/10.1038/sj.emboj.7600620
  34. Fraenkel, Y., Shalev, D. E., Gershoni, J. M. and Navon, G. (1996) Nuclear magnetic resonance (NMR) analysis of ligand receptor interactions: the cholinergic system-a model. CRC, Crit. Rev. Biochem. Mol. Biol. 31, 273-301. https://doi.org/10.3109/10409239609106586
  35. Luo, S., Nguyen, T. A., Cartier, G. E., Olivera, B. M., Yoshikami, D. and McIntosh, J. M. (1999) Single-residue alteration in $\alpha$-conotoxin PnIA switches its nAChR subtype selectivity. Biochemistry 38, 14542-14548. https://doi.org/10.1021/bi991252j
  36. McIntosh, J. M., Azam, L., Staheli, S., Dowell, C., Lindstrom, J. M., Kuryatov, A., Garrett, J. E., Marks, M. J. and Whiteaker, P. (2004) Analogs of $\alpha$-conotoxin MII are selective for $\alpha 6$-containing nicotinic acetylcholine receptors. Mol. Pharmacol. 65, 944-952. https://doi.org/10.1124/mol.65.4.944
  37. Mok, K. H. and Han, K.-H. (1999) NMR solution conformation of an antitoxic analogue of $\alpha$-conotoxin GI: identification of a common nicotinic acetylcholine receptor $\alpha 1$-subunit binding surface for small ligands and $\alpha-conotoxins$. Biochemistry 38, 11895-11904. https://doi.org/10.1021/bi990558n
  38. Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325. https://doi.org/10.1146/annurev.biophys.29.1.291
  39. Homer, N., Merriman, B. and Nelson, S. (2009) Local alignment of two-base encoded DNA sequence. BMC Bioinformatics 10, 175.
  40. Dutertre, S., Ulens, C., Buttner, R., Fish, A., van Elk, R., Kendel, Y., Hopping, G., Alewood, P. F., Schroeder, C., Nicke, A., Smit, A. B., Sixma, T. K. and Lewis, R. J. (2007) AChBP-targeted $\alpha$-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J. 26, 3858-3867. https://doi.org/10.1038/sj.emboj.7601785
  41. Le Novere, N., Grutter, T. and Changeux, J.-P. (2002) Models of the extracellular domain of the nicotinic receptors and of agonist- and $Ca^{2+}$-binding sites. Proc. Natl. Acad. Sci. U.S.A 99, 3210-3215. https://doi.org/10.1073/pnas.042699699

Cited by

  1. Replica-Averaged Metadynamics vol.9, pp.12, 2013, https://doi.org/10.1021/ct4006272
  2. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors vol.8, pp.10, 2013, https://doi.org/10.1517/17460441.2013.822365
  3. Identifying Key Amino Acid Residues That Affect α-Conotoxin AuIB Inhibition of α3β4 Nicotinic Acetylcholine Receptors vol.288, pp.48, 2013, https://doi.org/10.1074/jbc.M113.512582
  4. Characterization of a T-superfamily conotoxin TxVC from Conus textile that selectively targets neuronal nAChR subtypes vol.454, pp.1, 2014, https://doi.org/10.1016/j.bbrc.2014.10.055
  5. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR vol.6, pp.1, 2016, https://doi.org/10.1038/srep22349
  6. Molecular Analysis of AFP and HSA Interactions with PTEN Protein vol.2015, 2015, https://doi.org/10.1155/2015/256916
  7. Alanine Scan of α-Conotoxin RegIIA Reveals a Selective α3β4 Nicotinic Acetylcholine Receptor Antagonist vol.290, pp.2, 2015, https://doi.org/10.1074/jbc.M114.605592
  8. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors vol.11, pp.2, 2019, https://doi.org/10.3390/toxins11020113