Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.5.275

Molecular docking study on the α3β2 neuronal nicotinic acetylcholine receptor complexed with α-Conotoxin GIC  

Lee, Che-Wook (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Si-Hyung (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Do-Hyoung (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Han, Kyou-Hoon (Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
BMB Reports / v.45, no.5, 2012 , pp. 275-280 More about this Journal
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a diverse family of homo- or heteropentameric ligand-gated ion channels. Understanding the physiological role of each nAChR subtype and the key residues responsible for normal and pathological states is important. ${\alpha}$-Conotoxin neuropeptides are highly selective probes capable of discriminating different subtypes of nAChRs. In this study, we performed homology modeling to generate the neuronal ${\alpha}3$, ${\beta}2$ and ${\beta}4$ subunits using the x-ray structure of the ${\alpha}1$ subunit as a template. The structures of the extracellular domains containing ligand binding sites in the ${\alpha}3{\beta}2$ and ${\alpha}3{\beta}4$ nAChR subtypes were constructed using MD simulations and ligand docking processes in their free and ligand-bound states using ${\alpha}$-conotoxin GIC, which exhibited the highest ${\alpha}3{\beta}2$ vs. ${\alpha}3{\beta}4$ discrimination ratio. The results provide a reasonable structural basis for such a discriminatory ability, supporting the idea that the present strategy can be used for future investigations on nAChR-ligand complexes.
Keywords
${\alpha}$-Conotoxin GIC; Homology modeling; Ligand-docking; Molecular dynamics (MD) simulations; Nicotinic acetylcholine receptors (AChRs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Corringer, P. J., Novere, N. L. and Changeux, J. P. (2000) Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431-458.   DOI   ScienceOn
2 Arias, H. R. (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem. Int. 36, 595-645.   DOI   ScienceOn
3 Paterson, D. and Nordberg, A. (2000) Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 61, 75-111.   DOI   ScienceOn
4 Myers, R. A., Cruz, L. J., Rivier, J. E. and Olivera, B. M. (1993) Conus peptides as chemical probes for receptors and ion channels. Chem. Rev. 93, 1923-1936.   DOI   ScienceOn
5 Dutertre, S., Ulens, C., Buttner, R., Fish, A., van Elk, R., Kendel, Y., Hopping, G., Alewood, P. F., Schroeder, C., Nicke, A., Smit, A. B., Sixma, T. K. and Lewis, R. J. (2007) AChBP-targeted $\alpha$-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J. 26, 3858-3867.   DOI   ScienceOn
6 Le Novere, N., Grutter, T. and Changeux, J.-P. (2002) Models of the extracellular domain of the nicotinic receptors and of agonist- and $Ca^{2+}$-binding sites. Proc. Natl. Acad. Sci. U.S.A 99, 3210-3215.   DOI   ScienceOn
7 Luo, S., Nguyen, T. A., Cartier, G. E., Olivera, B. M., Yoshikami, D. and McIntosh, J. M. (1999) Single-residue alteration in $\alpha$-conotoxin PnIA switches its nAChR subtype selectivity. Biochemistry 38, 14542-14548.   DOI   ScienceOn
8 Hansen, S. B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P. and Bourne, Y. (2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24, 3635-3646.   DOI   ScienceOn
9 Bourne, Y., Talley, T. T., Hansen, S. B., Taylor, P. and Marchot, P. (2005) Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake $\alpha$-neurotoxins and nicotinic receptors. EMBO J. 24, 1512-1522.   DOI   ScienceOn
10 Fraenkel, Y., Shalev, D. E., Gershoni, J. M. and Navon, G. (1996) Nuclear magnetic resonance (NMR) analysis of ligand receptor interactions: the cholinergic system-a model. CRC, Crit. Rev. Biochem. Mol. Biol. 31, 273-301.   DOI
11 McIntosh, J. M., Azam, L., Staheli, S., Dowell, C., Lindstrom, J. M., Kuryatov, A., Garrett, J. E., Marks, M. J. and Whiteaker, P. (2004) Analogs of $\alpha$-conotoxin MII are selective for $\alpha 6$-containing nicotinic acetylcholine receptors. Mol. Pharmacol. 65, 944-952.   DOI   ScienceOn
12 Mok, K. H. and Han, K.-H. (1999) NMR solution conformation of an antitoxic analogue of $\alpha$-conotoxin GI: identification of a common nicotinic acetylcholine receptor $\alpha 1$-subunit binding surface for small ligands and $\alpha-conotoxins$. Biochemistry 38, 11895-11904.   DOI   ScienceOn
13 Grant, M. A., Gentile, L. N., Shi, Q.-L., Pellegrini, M. and Hawrot, E. (1999) Expression and spectroscopic analysis of soluble nicotinic acetylcholine receptor fragments derived from the extracellular domain of the $\alpha$-subunit. Biochemistry 38, 10730-10742.   DOI   ScienceOn
14 Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325.   DOI   ScienceOn
15 Homer, N., Merriman, B. and Nelson, S. (2009) Local alignment of two-base encoded DNA sequence. BMC Bioinformatics 10, 175.
16 Ulens, C., Hogg, R. C., Celie, P. H., Bertrand, D., Tsetlin, V., Smit, A. B. and Sixma, T. K. (2006) Structural determinants of selective $\alpha$-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl. Acad. Sci. U.S.A 103, 3615-3620.   DOI   ScienceOn
17 Bren, N. and Sine, S. M. (2000) Hydrophobic pairwise interactions stabilize $\alpha$-conotoxin MI in the muscle acetylcholine receptor binding site. J. Biol. Chem. 275, 12692-12700.   DOI   ScienceOn
18 Chiara, D. C., Xie, Y. and Cohen, J. B. (1999) Structure of the agonist-binding sites of the torpedo nicotinic acetylcholine receptor: Affinity-labeling and mutational analyses identify $\gamma$Tyr-111/$\delta$Arg-113 as antagonist affinity determinants. Biochemistry 38, 6689-6698.   DOI   ScienceOn
19 Quiram, P. A., McIntosh, J. M. and Sine, S. M. (2000) Pairwise interactions between neuronal $\alpha$7acetylcholine receptors and $\alpha$-conotoxin PnIB. J. Biol. Chem. 275, 4889-4896.   DOI   ScienceOn
20 Sugiyama, N., Marchot, P., Kawanishi, C., Osaka, H., Molles, B., Sine, S. M. and Taylor, P. (1998) Residues at the subunit interfaces of the nicotinic acetylcholine receptor that contribute to $\alpha$-conotoxin M1 binding. Mol. Pharmacol. 53, 787-794.   DOI
21 Shon, K.-J., Koerber, S. C., Rivier, J. E., Olivera, B. M. and McIntosh, J. M. (1997) Three-dimensional solution structure of $\alpha$-conotoxin MII, an ${\alpha}3{\beta}2$ neuronal nicotinic acetylcholine receptor- targeted ligand. Biochemistry 36, 15693-15700.   DOI   ScienceOn
22 Dutertre, S., Nicke, A., Tyndall, J. D. A. and Lewis, R. J. (2004) Determination of $\alpha$-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. J. Mol. Recogn. 17, 339-347.   DOI   ScienceOn
23 Hu, S.-H., Loughnan, M., Miller, R., Weeks, C. M., Blessing, R. H., Alewood, P. F., Lewis, R. J. and Martin, J. L. (1998) The 1.1 Å resolution crystal structure of [Tyr15]EpI, a novel $\alpha$-conotoxin from Conus episcopatus, solved by direct methods. Biochemistry 37, 11425-11433.   DOI   ScienceOn
24 Park, K.-H., Suk, J.-E., Jacobsen, R., Gray, W. R., McIntosh, J. M. and Han, K.-H. (2001) Solution conformation of $\alpha$-conotoxin EI, a neuromuscular toxin specific for the ${\alpha}1/\delta$ subunit interface of torpedo nicotinic acetylcholine receptor. J. Biol. Chem. 276, 49028-49033.   DOI   ScienceOn
25 Cho, J.-H., Mok, K. H., Olivera, B. M., McIntosh, J. M., Park, K.-H. and Han, K.-H. (2000) Nuclear magnetic resonance solution conformation of $\alpha$-conotoxin AuIB, an ${\alpha}3{\beta}4$ subtype- selective neuronal nicotinic acetylcholine receptor antagonist. J. Biol. Chem. 275, 8680-8685.   DOI   ScienceOn
26 Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van der Oost, J., Smit, A. B. and Sixma, T. K. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269-276.   DOI   ScienceOn
27 Cartier, G. E., Yoshikami, D., Gray, W. R., Luo, S., Olivera, B. M. and McIntosh, J. M. (1996) A new $\alpha$-conotoxin which targets 32 nicotinic acetylcholine receptors. J. Biol. Chem. 271, 7522-7528.   DOI
28 Celie, P. H. N., Kasheverov, I. E., Mordvintsev, D. Y., Hogg, R. C., van Nierop, P., van Elk, R., van Rossum-Fikkert, S. E., Zhmak, M. N., Bertrand, D., Tsetlin, V., Sixma, T. K. and Smit, A. B. (2005) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an $\alpha$-conotoxin PnIA variant. Nat. Struct. Mol. Biol. 12, 582-588.   DOI   ScienceOn
29 Dellisanti, C. D., Yao, Y., Stroud, J. C., Wang, Z.-Z. and Chen, L. (2007) Crystal structure of the extracellular domain of nAChR $\alpha$1 bound to $\alpha$-bungarotoxin at 1.94 A resolution. Nat. Neurosci. 10, 953-962.   DOI   ScienceOn
30 Sandall, D. W., Satkunanathan, N., Keays, D. A., Polidano, M. A., Liping, X., Pham, V., Down, J. G., Khalil, Z., Livett, B. G. and Gayler, K. R. (2003) A novel $\alpha$-conotoxin Identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 6904-6911.   DOI   ScienceOn
31 Gray, W. R., Luque, A., Olivera, B. M., Barrett, J. and Cruz, L. J. (1981) Peptide toxins from Conus geographus venom. J. Biol. Chem. 256, 4734-4740.
32 Chi, S.-W., Kim, D.-H., Olivera, B. M., McIntosh, J. M. and Han, K.-H. (2004) Solution conformation of alpha-conotoxin GIC, a novel potent antagonist of ${\alpha}3{\beta}2$ nicotinic acetylcholine receptors. Biochem. J. 380, 347-352.   DOI   ScienceOn
33 Chi, S.-W., Lee, S.-H., Kim, D.-H., Kim, J.-S., Olivera, B. M., McIntosh, J. M. and Han, K.-H. (2005) Solution structure of $\alpha$-conotoxin PIA, a novel antagonist of $\alpha$6 subunit containing nicotinic acetylcholine receptors. Biochem. Biophys. Res. Commun. 338, 1990-1997.   DOI   ScienceOn
34 McIntosh, J. M., Dowell, C., Watkins, M., Garrett, J. E., Yoshikami, D. and Olivera, B. M. (2002) $\alpha$-Conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J. Biol. Chem. 277, 33610-33615.   DOI   ScienceOn
35 Chi, S.-W., Park, K.-H., Suk, J.-E., Olivera, B. M., McIntosh, J. M. and Han, K.-H. (2003) Solution conformation of $\alpha$A-conotoxin EIVA, a potent neuromuscular nicotinic acetylcholine receptor antagonist from Conus ermineus. J. Biol. Chem. 278, 42208-42213.   DOI   ScienceOn
36 Han, K.-H., Hwang, K.-J., Kim, S.-M., Kim, S.-K., Gray, W. R., Olivera, B. M., Rivier, J. and Shon, K.-J. (1997) NMR structure determination of a novel conotoxin, [Pro 7,13] $\alpha$A-conotoxin PIVA. Biochemistry 36, 1669-1677.   DOI   ScienceOn
37 Hu, S.-H., Gehrmann, J., Alewood, P. F., Craik, D. J. and Martin, J. L. (1997) Crystal structure at 1.1 Å resolution of $\alpha$-conotoxin PnIB: Comparison with $\alpha$-conotoxins PnIA and GI. Biochemistry 36, 11323-11330.   DOI   ScienceOn
38 Martinez, J. S., Olivera, B. M., Gray, W. R., Craig, A. G., Groebe, D. R., Abramson, S. N. and McIntosh, J. M. (1995). $\alpha$-Conotoxin EI, A new nicotinic acetylcholine receptor antagonist with novel selectivity. Biochemistry 34, 14519-14526.   DOI
39 Lopez-Vera, E., Aguilar, M. B., Schiavon, E., Marinzi, C., Ortiz, E., Restano Cassulini, R., Batista, C. V. F., Possani, L. D., Heimer de la Cotera, E. P., Peri, F., Becerril, B. and Wanke, E. (2007) Novel $\alpha$-conotoxins from Conus spurius and the $\alpha$-conotoxin EI share high-affinity potentiation and low-affinity inhibition of nicotinic acetylcholine receptors. FEBS J. 274, 3972-3985.   DOI   ScienceOn
40 McIntosh, J. M., Plazas, P. V., Watkins, M., Gomez-Casati, M. E., Olivera, B. M. and Elgoyhen, A. B. (2005) A novel $\alpha$-conotoxin, PeIA, cloned from Conus pergrandis, discriminates between rat ${\alpha}9{\alpha}10$ and ${\alpha}7$ nicotinic cholinergic receptors. J. Biol. Chem. 280, 30107-30112.   DOI   ScienceOn
41 López-Vera, E., Jacobsen, R. B., Ellison, M., Olivera, B. M. and Teichert, R. W. (2007) A novel alpha conotoxin ($\alpha$-PIB) isolated from C. purpurascens is selective for skeletal muscle nicotinic acetylcholine receptors. Toxicon. 49, 1193-1199.   DOI   ScienceOn