• Title/Summary/Keyword: accurate solution

Search Result 1,194, Processing Time 0.03 seconds

Time-Domain Electromagnetic Coupling in Induced Polarization Surveys on a Uniform Earth (균질대지에 대한 시간영역 유도분극법에 전자기결합)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.193-197
    • /
    • 1986
  • A simple and fast solution is derived to evaluate the effects of time-domain electromagnetic coupling in induced polarization surveys on a uniform earth. The simplified solution gives an explicit statement of the dependence of time-domain electromagnetic coupling on the model parameters, and yields sufficiently accurate results for most situations encountered in practice. The co-linear dipole-dipole and Wenner arrays are used as examples in this paper, but th numerical solution can be applied to any electrode configuration.

  • PDF

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup Neutron Diffusion Equation

  • Kim, Hyun-Dae-;Oh, Se-Kee
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.99-102
    • /
    • 1993
  • A consistent general order nodal method for solving the three-dimensional neutron diffusion equation in (x-y-z) geometry has been derived by using a weighted integral technique and expanding the spatial variable by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes fewer unknown variables in the schemes for iterative-convergence solution than other nodal methods listed in the literatures, and because the method utilizes the analytic solutions of the transverse-integrated one dimensional equations and a consistent approximation for a given spatial variable through all the solution procedures, which renders the use of an approximation for the transverse leakages no longer necessary, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased.

  • PDF

Accurate FDTD Analysis of Bow-tie Antenna

  • Cho, Young-Il;Park, Dong-Hyuk;Park, Soeng-Ook
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.13-16
    • /
    • 2004
  • In this paper, FDTD analysis of the bow-tie antenna is investigated by incorporating static field solution that is suitable to the bow-tie antenna without increasing computational time. Transforming static feld solution to the rotated grid system, we can obtain the transformed static field solution which is able to represent field behavior near the oblique edge line of the bow-tie antenna. The result shows a good agreement with a MoM analysis and is compared conformal modeling technique and regular FDTD method.

Method for Rapid and Accurate Measurement of Chitosan Viscosity

  • No, Hong -Kyoon;Samuel P. Meyers
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.85-87
    • /
    • 1999
  • A simple and rapid method to estimate the viscosity of chitosan using laboratory pipettes was developed. The voscosities of nine different chitosan samples, prepared ini 1 % acetic acid at a 1% concentration , were measured with a standard viscometer. Prior to measurement of flow time of 1% chitosan solution with a pipette, twelve pipettes were assorted into three groups with flow times of 4, 5 and 6 sec after measuring passage of 9 ml of 1% acetic acid througth a 10 ml pipette. With each group of pipettes. flow time of 1% chitosan solution was determined by measuring the delivery time of 5 ml of the 10ml solution through a 10 ml pipette. Results of regression analyses revealed high linear relationship(R2=0.9812, 0.9663, and 0.9754) between viscosities calculated with a viscometer and flow times measured with 4, 5 or 6 sec group pipettes. The viscosity of chitosan could be readily and accurately estimated from these linear regression equation by measuring flow times based on pipette delivery.

  • PDF

Solution Recovery Techniques for Posteriori Error Estimation (후처리 에러산정을 위한 가상해 도출방법)

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.47-53
    • /
    • 1996
  • An enhanced solution recovery method for recovering accurate derivatives such as moments, or shears, from finite element solutions for $C^{0}$ beam and plate is presented. In the enhanced method, the square of the residuals in the equilibrium equations is included. Results are compared with those of standard Zienkiewicz-Zhu methods. Numerical examples show that in the global projection, the enhanced technique improves the accuracy of projected solution significantly. In the local projection, the enhanced method circumvents the numerical ill-conditioning which occurs in some meshes, and usually recovers derivatives with better accuracy.y.

  • PDF

Analytical Solution for Harbour Oscillations (항내응답에 대한 해석해)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • Two analytical solutions for oscillations in a rectangular harbour are presented. In this paper, the correct solution is obtained by use of matched asymptotic expansion method, which was first derived by Mei(1989). The other solution derived from eigenfunction expansion method is also presented, in which more accurate numerical integration is employed. In order to check the solutions, amplification factors inside the harbor are calculated and plotted by both analytical methods and numerical boundary integral equation method.

  • PDF

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF

Determination of sulfur containing organic drugs by means of thin layer chromatography and flask combustion method (Thinlayer chromatography및 oxygen combustion flask method에 의한 유기유황약품의 분리정량)

  • 백남호;김박광
    • YAKHAK HOEJI
    • /
    • v.13 no.2_3
    • /
    • pp.84-87
    • /
    • 1969
  • Microanalysis of organic sulfur compounds by means of combining thin layer chromatography and oxygen combustion flask method was attempted. The following procedure was found to be very simple and to give accurate results. The mixture of sulfa drugs was separated with T.L.C., and it was burned in a flask filled with oxygen, and the gas formed was absorbed in a dilute solution of sodium hydroxide. The solution was neuralized with hydrochloric acid and heated in a water bath. The sulfate ion formed was then treated with barium chromate solution and its absorbancy at 370 m.mu. was measured.

  • PDF

Advanced techniques of solution nuclear magnetic resonance spectroscopy for structural investigation of protein-protein interaction

  • Sugiki, Toshihiko;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.76-81
    • /
    • 2018
  • Investigation of the protein-protein interaction mode at atomic resolution is essential for understanding on the underlying functional mechanisms of proteins as well as for discovering druggable compounds blocking deleteriou interprotein interactions. Solution NMR spectroscopy provides accurate and precise information on intermolecular interactions even for weak and transient interactions, and it is also markedly useful for examining the change in the conformation and dynamics of target proteins upon binding events. In this mini-review, we comprehensively describe three unique and powerful methods of solution NMR spectroscopy, paramagnetic relaxation enhancement (PRE), pseudo-contact shift (PCS), and residual dipolar coupling (RDC), for the study on protein-protein interactions.

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Mohammad Tahaye Abadi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.