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Abstract

Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial
processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr gen-
erated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets
before they reach the open spaces in a fuel rod. These processes can be studied by ‘tracer dif-
fusion’ techniques, by which grain boundary diffusivity can be estimated and directly used for low
burn-up fission gas release analysis. However, only a few models accounting for the both procesées
are available and mostly handle them numerically due to mathematical complexity. Also the nu-
merical solution has limitations in a practical use. In this paper, an approximate analytical solution
in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion
techniques. This closed-form solution is compared to available exact and numerical solutions and it
tumns out that it makes computation not only greatly easier but also more accurate than previous
models. It can be applied to theoretical modelings for low burn-up fission gas release phenomena

and experimental analyses as well, especially for PIE (post irradiation examination).

1. Introduction

Understanding the release mechanisrn of fission
gases inside UO:z fuel pellets during reactor operation
is of great technical importance for the achievernent
of reliable high fuel performance. Build-up of the fis-
sion gases in a gap between fuel pellets and cladding
not only impairs the heat transfer from fuel to cool-

ant but also increases the internal gas pressure of the

fuel rod. Corrosive fission products such as iodine
may chemically attack the inner surface of the fuel
cladding, thus, assist to breach it. Despite the great
importance, in actual, complex and uncertain mech-
anism of the fission gas release imposes undesirably
higher operational margin than needed, which has to
be eliminated for higher performance operation. For
these reasons the behavior of the fission gases in the
irradiated UO:2 pellet has been extensively studied by
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many researchers, either in-pile measurements or
post-irradiation examinations.

The quantitative analysis for the fission gas release
rate prediction involves the lattice diffusion inside
grains and the grain boundary diffusion through
grain boundaries. Thus the combined effect of the
two diffusivities is an important factor in the analysis
of the fission gas release although it is believed that
the grain boundary diffusivity is orders of magnitude
greater than the lattice diffusivity.

The diffusion processes in the fission gas release
can be studied by ‘tracer diffusion’ techniques. Dif-
fusion processes in the methods follow just the re-
verse way of the diffusion processes in the fission gas
release : tracer atoms from a oper{ surface diffuse
through grain boundaries and then diffuse again
from the grain boundary to the matrix. The grain
boundary diffusivity can be estimated by a quantitat-
ive diffusion analysis.

The mathematical analysis of the grain boundary
diffusion process began with Fisher [1]. He studied
the effect of coupling lattice diffusion and grain boun-
dary diffusion on the tracer penetration into a solid.
He treated the grain boundary as an isolated, thin
semi-infinite slab embedded in the lattice perpendicu-
lar to the free surface and obtained the approxi-
mation solution. Whipple [2] later presented the nu-
merical solution using Laplace-Fourier transformation
for the same problem. Suzuoka considered the case
of finite amount of diffusant source, which means
that the concentration of the surface source may vary
with time [3]. Subsequently these stationary bound-
ary modeling works have been carried out diversely
and in detail in many references [4-7]. However,
most of them handle the problem numerically, whose
solution techniques are limited in a practical use.

In the mean time, grains in a fuel pellet grow and
shrink according to grain growth kinetics, especially
at elevated temperature at which nuclear reactors are
operating. Thus the boundary movement ascribed to
the grain growth greatly influences the fission gas re-
lease rate by leagthening or shortening the lattice dif-
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fusion distance, which is the rate limiting step. Sweep-
ing fission gases by the moving boundary contributes
to the increment of the fission gas release as well.
However, even for a tracer diffusion analysis, taking
both the intragranular grain growth and the diffusion
processes simultaneously into consideration is not
easy. Glaeser and Evans studied the effect of grain
boundary migration on this coupled diffusion prob-
lem with the assumption that the grain boundary
movement is extremely faster than tracer atoms dif-
fusion in the grain lattice [8].

Recently, Olander and El-Saied [9] proposed a
comprehensive model which accounts for both sta-
tionary and moving grain boundary during the tracer
diffusion. Their numerical solution improves the com-
putational accuracy and the capability of handling
moving grain boundary problem as well. However, it
is also a numerical solution, thus, requires a com-
puter and a compatible numerical solvers since it con-
tains the unsolved partial differential equations in the
model.

Current study on this coupled grain lattice and
grain boundary diffusion problem consists of two par-
ts:one is stationary and the other moving grain
boundary case. Here in this paper an approximate
analytical ‘solution for the stationary grain boundary
diffusion case is developed by extending previous
Olander and El-Saied’s work. Resultant closed-form
solution, instead of numerical solution, is compared
to available exact and numerical solutions. Second
part for the moving grain boundary case will be pres-
ented later in this journal.

2. Mathematical Formulation

Mathematical analysis of the moving grain bound-
ary problem [1-4]'in a tracer diffusion technique deal-
s with the grain boundary as a single, semi-infinite
thin slab of thickness & intersecting the surface at a
right angle. Diffusion species (tracer} on the surface
is a radioactive isotope and completely soluble in the
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lattice. Volume diffusion, grain boundary diffusion as
well as grain boundary movement processes assist
tracer deposition in a solid. Figure 1 shows the ge-
ometry and the processes considered in this formu-
lation. Tracer atoms on the surface diffuse into a sol-
id either by direct volume diffusion or by diffusion
through the grain boundary followed by lateral vol-
ume diffusion from the boundary to the lattice. Since
the grain boundary redeposits tracer behind when it
moves, the tracer concentration ahead of the bound-
ary is different from that behind it. Thus two lattice
diffusion equations are needed to describe the lattice
concentration  distributions upstream and down-
stream of the moving boundary.

Taking the grain boundary as the origin of the co-
ordinate x and the surface as the origin of y the trac-
er conservation equations are:

oc & C aC
a DAY (2
ﬂ( - D &C o’

= —— + V-
(‘,}1 E\'J (}X’ (1b)
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Fig. 1. Geometry and Solute Diffusion Processes Invol-
ved in Tracer Deposition(slab model)

where t is time and x and x” are the lateral position
ahead of and behind the moving grain boundary, re-
spectively. C and C’ are the tracer ‘concentrations
also ahead of and behind the boundary, respectively.
D is the lattice diffusion coefficient and v is the grain
boundary velocity.

In equations (la) and (1b), first terms represent

"normal Fickian diffusion, whereas second terms

mean convective terms since the grain boundary tak-
en as the frame of reference is moving with velocity
v. Grain lattice diffusion is restricted to lateral direc-
tion parallel to the surface, thus, direct volume dif-
fusion iny direction in the lattice is neglected. This
assumption is valid at short annealing times and at
depths at which solute supply to the lattice from the
grain boundary is dominant.

Tracer concentration in the grain boundary, Cg, is
given by the balance equation:

aC 8'C :
8—==8D,—2+D (99) +(ac)
St . a)" ox =0 ox’ x'=0

@)
Dy is the grain boundary diffusion coefficient

Equations (1) and (2) can be rewritten using fol-

lowing dimensionless parameters :

Dt
X=—, Y=—)—. and 1= —.
E
g 3Dy,
For these parameters E is defined as D
New equations are as follows:
oC ¢&C oC
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for the diffusion in the grain lattice and
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for the diffusion in the grain boundary. A is a dim-
ensionless grain boundary velocity and B is the ratio
of lattice and grain boundary diffusivities:

Azili B:_P_.

)

D D,

Because the grain boundary thickness ¢ is very
small compared to the distance of lateral penetration
of the tracer isotope, a very low ratio of D/Dy is
needed to efficiently transport the tracer in the solid.
In general, the parameter B is in the order of 107°.
Thus the grain boundary storage capacity, Bdg/07, of
the tracer can be neglected. Thus in the mathemat-
ical formulation the grain boundary diffusion in
equation (4) can be dealt with as a quasi-stationary
form by setting BdCq/67 =0.

As /Dt is a characteristic lattice diffusion length,
Dg/D should be comparable to ~/Dt/5. E represents
a characteristic length of this problem while A repres-

ents the relative importance of grain boundary move-

ment to the lattice diffusion in delivering tracer to the
interior of the polycrystal.

Fisher’s, Whipple’s, and Suzuoka’s models corre-
spond to the limit for v equals zero, i. e, A=0 in
equations (3a) and (3b) while Glaeser-Evans’ model
is the limit for D approaching zero.

Boundary conditions for these equations (3} and
{4) are:

C(0,Y,1) =C'(0,Y,1) = C_(Y.1)and

gh
C(ec.Y.1) = C'(0, Y, 1) =0 (5)

fot the lattice diffusion and
C,(0.1)y=1and C,(»,1)=0 (6)

for the grain boundary diffusion, respectively. Initial
conditions are:

CX,Y,0)=C(X,Y,0)=0 @

for the lattice diffusion and
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Cgb = (YQO) =0 (8)
for the grain boundary diffusion, respectively.

In fact, the boundary conditions in equation (5)
require that separation of the grain boundaries, i. e.,
average grain size d be large compared to both the
characteristic lattice diffusion length, vDt, and the
extent of motion of the grain boundary during an-
nealing process to prevent overlapping the lateral
concentration profiles from adjacent boundaries and
to insure that the tracer penetration through the
boundary does not reach the first parallel boundary
beneath the surface.

3. Approximate Analytical Solution for
Stationary Grain Boundary Case

Equation (3) and (4) are to be solved with respect-
ive conditions (5) through (8) to obtain Cg and C
and C’. In this section the development of an ap-
proximate analytical solution only for the stationary
grain boundary case, i. e, A=0, and zero tracer stor-
age capacity of grain boundary, i. e, dCg/07=0 is
introduced.

Reduced governing equations for this case are as
follows:

n  oxX 2
o FC

* o 9b,
ot ax” ©b)

With reduced tracer balance equation in the grain
boundary: *

&C, 1(8C 1(aC
0= -+ — + = — (10)
Y™ 2 \X/,., 2\X'/,.,
Initial and boundary conditions are identical to the
previous ones.

Now the solution for equation (9a) is considered
first since X=X"and C=C" by symmetry. As the left
boundary condition in equation (5) varies with time,
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Duhamel’s theorem [10] can be applied to find the
analytical solution of C. First, Cg as the left boundary
condition for equation (9a) is assumed to be con-
stant and then the equation is solved with the right
side boundary and initial conditions. Let the solution
be g(X, 7). Then, the ultimate solution of equation
(9a) can be deduced from g(X, 1) for constant sur-
face condition by the use of Duhamel theorem, lead-

ing to:
v v . S0
CXY.1) = [ ul»(Y-’~)5“¥(>\~T a1
’ T

If Cq is constant in equation (5), the solution of
equation (9a} for constant surface condition is given
by :

(X 1) = crib( "ng (12)
2\“"[

Since the behavior of C is to be evaluated only at
X approaching zero, i. e., in {aC/Xx-o0), Ce in the
integral of equation (11) can, with acceptable accu-

racy, be expanded in a two-term Taylor series:

X

B e (:(‘?h(y‘.[)
45 '

i 42 ot (13)

if &is defined as Xv1—4.
Substituting equation (13) into equation (11) and
then integrating the equation in terms of ¢ from X/2 < T

to « instead of 2 from O to t vields:

i (it R A O
C=crte(0)C, -] J-Xe " - - XNerte(8) E
i \ 2 ) o
(14a)
X
wh = =
ere N

Similarly the other pair solution of equation (14a)

can be easily derived:

"= crfc(()")(’;t;
¢ I < Lol
PoooNe Y o O NTerfe0) ] =7 (14b)
P\ w 2 } s
X
where () = =
ere o

0 and 6 are the dimensionless diffusional character-
istic length in the direction of X and X', respectively.
Derivatives of C and C” with respect to X and X’ at
X =0 and X" =0, respectively, are:

, ;_— *C
LE) = - Ci _ T (15a)
X/ vat Vn ér
and
' C,, [t ¢C,,
(ac ) L (15b)
X'/ amt Vm &t

Inserting these two equations into equation (10)
produces a partial differential equation for the grain
boundary concentration:

JToC, @Cy C,
x ot oY: Jmt (16)

This equation has to be solved in order to deter-
mine the ultimate analytical solutions C and C’ in
equations (14a) and (14b). Necessary boundary and
initial conditions for this equation are the ones in

equations (6) and (8) in the previous section. Hith-
erto derived expressions for C and Cg are basically
identical to Olander and El-saied’s work. To solve
them they resorted to numerical solutions.

Here another dimensionless variable, the diffusion-
al characteristic length in the grain boundary, is
introduced to solve the partial differential equation
(16) analytically:

B Y
C 2(4nn)

Using the chain rule of differentiation, equation {16)

(17)

can be rewritten as:

62Cul‘ ,)q) acub 8C 0 ( )
2 426 - -8C, = 18
8¢° 50 #

On applying the boundary and initial conditions in
equations (6) and (8) to equation (18), the tracer
concentration in the grain boundary is determined
11}
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C, = =21 I‘( +1)1 erfc(¢) (19)

i*erfc(¢ ) in above equation is when n=4 in the fol-
lowing definition:

i"erfc(d) = " (t d[ (20)

ff——=
\[_
Tracer concentration in the matrix can be obtained
by substituting equation (19) into equation (14a) and
(14b).

Then C in equation (14a) representing the tracer

concentration in the lattice becomes:

C(®,¢) =2* l"(3)|:erfc(9)i"erfc(¢) -

. 2 ,

l¢i“erfc(¢) —ge™ —206%erfc(0) (21)
4 Jr

If equation (21) is rewritten by using consecutive re-

peated integral forms of the error function and cor-

rected based on the intuition from the manyterms

Taylor series manipulation, the equation becomes:

C(0.¢) = 41“(—;— + l)erfc(e)i'erfc(cp)

3 N 2
-2} F(; + l)d)i ‘erfc(¢){— Qe*

= ? -2efen‘c(e)}

(22a)

Since C=C" and X=X’ by symmeiry, the tracer con-

centration in the left-side grain lattice of the grain
boundary is as follows:

C(6'.¢) = 2° F( + l)elfc(e yi'‘erfe(¢)

( + l)d)x enfc(d)){

;\l! [

(22b)

e - 29'261‘&(0')}
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4. Results and Discussion : Comparisons
with Earlier Works

The approximate analytical solution in equation
(22) was checked against the earlier works, Fisher's,
Whipple’s, and Olander-Elsaied’s solutions. As men-
tioned, Fisher derived the following solution by as-
suming that the tracer concentration in the grain
boundary is constant which corresponds to the left
boundary condition for the tracer balance equation
in the lattice:

Cy = Cerfc(0) (23a)

Cpp =7 (23b)
} N ¢

0=3vF 2\/' and ¢ 2(4n)"

whereas Whipple used Fourier-Laplace transform-
ation technique for the same problem. His technique
is explained in detail in reference [2}. His exact sol-
ution is as follows:

(24a)
7z} 14
Cow = erfc{( Tf) ) ¢l +( ! ) ‘Mn\ 93‘
T I nT

AR _ \f

e\P{ —(——) L }crfc{g W 1 (24b)
g s [
_ __Y Dy
where 0= ¢~ and A=

Olander and Elsaied’s mathematical treatment was
described in the previous section.

Those four solutions were evaluated numerically
by a mainframe IBM computer and the appropriate
subroutines in NAG13 mathematical library [12]. In
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Fig. 2. Tracer Concentration in the Grain Boundary

the computation the built-in error function in the -

brary was used for the error function evaluations whil-

e the numerical values for the repeated integrals of
the error function were taken from reference [11].
Figure 2 shows the tracer concentration in the
grain boundary as a function of the dimensionless
variable, ¢ =Y/2(4nt)""*. The figure demonstrates
that all solutions except Fisher's agree well until ¢ is

less than 2.0. As ¢ approaches 3.0, the concen-

tration goes down below 10™* and Olander-Kim’s sol-

ution is about the factor of two or three smaller than
Whipple’s exact solution. Practically in most of tracer
diffusion experiments the detection sensitivity is not
higher than 10 ° Thus the applicable range of ¢ of
the current solution lies in the practically important
range encountered in the analysis of experimental
results. On the other hand, Fisher’ solution begins to
deviate early even at around ¢ =05. In actual,
when ¢ is small (less than 0.2) the effect of direct

volume diffusion from the surface source remains sig-

nificant. Thus Fisher’s solution is very limited for the
practical use though his is simple and easy to use.
In Figure 3 the tracer concentration profiles in the

grain lattice are plotted for the four solutions in ter-

ms of 0= ZX/— at 0=0.57. The figure shows that
VT
Olander-Kim’s solution is the closest to Whipple's
exact solution though the profiles are all similar. It is

easily seen that the tracer concentrations in the fig-
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Fig. 3. Tracer Concentration in the Grain Lattice at
¢ =0.57

ure are actually falling very rapidly (below 0.01 after
0 =1.5) like the error function if y ordinate is conver-
ted to linear scale. Though in the experimental anal-
ysis average tracer concentration is of much more
practical use than the profile itself, this comparison is
made in the figure since averaging a profile with the
known profile is straightforward and, moreover, eluci-
dation of the concentration profile in the grain lattice
is important for the future moving grain boundary dif-
fusion study.

Motivation for developing this model is to permit
determination of grain boundary diffusivity easily and
accurately through the analysis of grain boundary dif-
fusion measurement. Grain boundary diffusion (self
or foreign atom) in metals have been studied theor-
efically and/or experimentally by many authors [1,3,
59,13]. Olander interpreted the tracer surface dif-
fusion expen'ments'_on UQ: in terms of gas transport
processes [14]. In order to enhance the accuracy of
fission gas release rate estimation concerns of dev-
eloping coupled lattice and grain boundary diffusion
analysis technique have arisen instead of ‘an equiv-
alent grain diameter’ or empirical approaches be-
cause they suffer many drawbacks. In that case a
good knowledge of grain boundary diffusivity is es-
sential. This Olander-Kim’s model, the analytical mod-
el of Olander-Elsaied model, was indirectly compared
with grain boundary diffusivity measurement data [9],
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however, thorough review and estimation of this mod-

el with experimental data will be discussed in the fol-
lowing paper in which, on the basis of this solution,
general solution for moving grain boundary diffusion
and experimental data analysis will be dealt with.

5. Conclusions

An approximate analytical solution for the coupled
lattice and stationary grain boundary diffusion case in
a solid was developed. It tumed out that the accu-
racy of the solution is comparable to Whipple's exact
solution and easy to use since it has a closed-form
and every term in the solution is analytically differ-
" entiable and integrable.

This work provides a platform for future moving
grain boundary diffusion study which is practically
important in the fission gas release analysis in reactor
operating conditions.

Acknowledgments

This work is supported by Non-Directed Research
Fund, Korea Science and Engineering Foundation
and a part of model development research on fission
gas release supported by Korean Electric Power Co.
through Electrical Engineering and Science Research
Center.

J. Korean Nudlear Sodiety, Vol. 29, No. 1, February 1997

References

1. J. Fisher,. Joumal of Applied Physics, 22, 74
(1951)

2. R. Whipple, Philosophical Magazine, 45, 1225
{1954)

3. T. Suzuoka, Transactions of the Japanese hsti-
tute of Metals, 2, 25 (1961)

4. H. Levine and C. MacCallum, Joumal of Ap- -
plied Physics, 31, 595 (1960)

- 5. D. Gupta, D. Campbell and P. Ho, Thin

Fim:Interdiffusion and Reactions, ed. by J. Poat-
e, K Tu and J. Mayer, p 161, John Wiley, New
York (1978)
6. N. Peterson, Intemational Metals Review, 28, 65
(1983)
7. A Atkinson, Solid State lonics, 12, 309 (1984)
8. A Glaeser and J. Evans, Acta Metallurgica, 34,
1545 (1986)
9. D. R. Olander and U. El-Saied, Acta Metallurgica,
40, 1329 (1992)
10. H. Carslaw and J. Jaeger, Conduction of Heat in
Solids, Oxford, Clarendon Press, 2nd Ed. (1957)
11. M. Abramowitz and LA Stegun, Handbook of
Mathematical Functions, p299, Dover Pub. Inc,,
New York (1972)
12. NAG FORTRAN Library Markl3, Oxford, UK.
{1990)
13. A D. Le Claire, Brit. J. Appl. Phys., 14, 351
(1963)
14. D. R. Olander, J. Nucl. Mater., 96, 243 (1981)



