• 제목/요약/키워드: accuracy of CBCT

검색결과 124건 처리시간 0.025초

방사선 치료 시 차폐물질 사용에 따른 kV-CBCT 선량감소 효과 (Reduced Effect of kV-CBCT Dose by Use of Shielding Materials in Radiation Therapy)

  • 조현종;박은태;김정훈
    • 한국방사선학회논문지
    • /
    • 제12권4호
    • /
    • pp.467-474
    • /
    • 2018
  • CBCT는 치료부위의 정확도 향상에 유용하지만, 반복적인 사용으로 피폭선량이 높아지는 단점이 있다. 이에 본 연구에서는 차폐체를 사용한 모의실험과 선량감소 효과를 데이터화하여 CBCT 시행 시 선량 저감화를 위한 기초자료를 제공하고자 한다. 본 연구에서는 MCNPX를 통해 CBCT를 모사하여 광자선을 분석한 후, UF-revised 인체 모의 피폭체를 대상으로 흉복부 촬영 시 장기의 흡수선량을 계산하였다. 이 때, 차폐체(납, 안티몬, 황산바륨, 텅스텐, 비스무스) 유무와 차폐 재질에 따른 장기선량을 평가하였다. 차폐를 하지 않고 CBCT 촬영을 하였을 경우 유방 과 척추에서 선량이 높게 계산되었으며, 식도와 폐에서 선량이 낮게 계산되었다. 차폐체 재질에 따른 선량 은 황산바륨, 안티몬, 비스무스, 납, 텅스텐 순으로 선량이 높게 계산되었다. 차폐체 유무에 따른 선량 감소율을 평가해 보면 흉선(73.6%), 유방(59.9%)에서 가장 차폐율이 높고, 폐(2.1%), 척추(12.6%)에서 가장 낮은 차폐율을 보였다.

Accuracy of linear measurement using cone-beam computed tomography at different reconstruction angles

  • Nikneshan, Sima;Aval, Shadi Hamidi;Bakhshalian, Neema;Shahab, Shahriyar;Mohammadpour, Mahdis;Sarikhani, Soodeh
    • Imaging Science in Dentistry
    • /
    • 제44권4호
    • /
    • pp.257-262
    • /
    • 2014
  • Purpose: This study was performed to evaluate the effect of changing the orientation of a reconstructed image on the accuracy of linear measurements using cone-beam computed tomography (CBCT). Materials and Methods: Forty-two titanium pins were inserted in seven dry sheep mandibles. The length of these pins was measured using a digital caliper with readability of 0.01 mm. Mandibles were radiographed using a CBCT device. When the CBCT images were reconstructed, the orientation of slices was adjusted to parallel (i.e., $0^{\circ}$), $+10^{\circ}$, $+12^{\circ}$, $-12^{\circ}$, and $-10^{\circ}$ with respect to the occlusal plane. The length of the pins was measured by three radiologists, and the accuracy of these measurements was reported using descriptive statistics and one-way analysis of variance (ANOVA); p<0.05 was considered statistically significant. Results: The differences in radiographic measurements ranged from -0.64 to +0.06 at the orientation of $-12^{\circ}$, -0.66 to -0.11 at $-10^{\circ}$, -0.51 to +0.19 at $0^{\circ}$, -0.64 to +0.08 at $+10^{\circ}$, and -0.64 to +0.1 at $+12^{\circ}$. The mean absolute values of the errors were greater at negative orientations than at the parallel position or at positive orientations. The observers underestimated most of the variables by 0.5-0.1 mm (83.6%). In the second set of observations, the reproducibility at all orientations was greater than 0.9. Conclusion: Changing the slice orientation in the range of $-12^{\circ}$ to $+12^{\circ}$ reduced the accuracy of linear measurements obtained using CBCT. However, the error value was smaller than 0.5 mm and was, therefore, clinically acceptable.

Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects

  • Kim, Jun Ho;Abdala-Junior, Reinaldo;Munhoz, Luciana;Cortes, Arthur Rodriguez Gonzalez;Watanabe, Plauto Christopher Aranha;Costa, Claudio;Arita, Emiko Saito
    • Imaging Science in Dentistry
    • /
    • 제50권2호
    • /
    • pp.133-139
    • /
    • 2020
  • Purpose: This study compared 2 cone-beam computed tomography (CBCT) systems in the detection of mechanically simulated peri-implant buccal bone defects in dry human mandibles. Materials and Methods: Twenty-four implants were placed in 7 dry human mandibles. Peri-implant bone defects were created in the buccal plates of 16 implants using spherical burs. All mandibles were scanned using 2 CBCT systems with their commonly used acquisition protocols: i-CAT Gendex CB-500 (Imaging Sciences, Hatfield, PA, USA; field of view [FOV], 8 cm×8 cm; voxel size, 0.125 mm; 120 kVp; 5 mA; 23 s) and Orthopantomograph OP300 (Intrumentarium, Tuusula, Finland; FOV, 6 cm×8 cm; voxel size, 0.085 mm; 90 kVp; 6.3 mA; 13 s). Two oral and maxillofacial radiologists assessed the CBCT images for the presence of a defect and measured the depth of the bone defects. Diagnostic performance was compared in terms of the area under the curve (AUC), accuracy, sensitivity, specificity, and intraclass correlation coefficient. Results: High intraobserver and interobserver agreement was found (P<0.05). The OP300 showed slightly better diagnostic performance and higher detection rates than the CB-500 (AUC, 0.56±0.03), with a mean accuracy of 75.0%, sensitivity of 81.2%, and specificity of 62.5%. Higher contrast was observed with the CB-500, whereas the OP300 formed more artifacts. Conclusion: Within the limitations of this study, the present results suggest that the choice of CBCT systems with their respective commonly used acquisition protocols does not significantly affect diagnostic performance in detecting and measuring buccal peri-implant bone loss.

Potential impact of metal crowns at varying distances from a carious lesion on its detection on cone-beam computed tomography scans with several protocols

  • Matheus Barros-Costa;Eduarda Helena Leandro Nascimento;Iago Filipe Correia-Dantas;Matheus L. Oliveira;Deborah Queiroz Freitas
    • Imaging Science in Dentistry
    • /
    • 제54권1호
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: This study evaluated the impact of artifacts generated by metal crowns on the detection of proximal caries lesions in teeth at various distances using cone-beam computed tomography (CBCT). Additionally, the diagnostic impacts of tube current and metal artifact reduction (MAR) were investigated. Materials and Methods: Thirty teeth were arranged within 10 phantoms, each containing 1 first premolar, 1 second premolar, and 1 second molar. A sound first molar (for the control group) or a tooth with a metal crown was placed. Of the 60 proximal surfaces evaluated, 15 were sound and 45 exhibited enamel caries. CBCT scans were acquired using an OP300 Maxio unit (Instrumentarium, Tuusula, Finland), while varying the tube current (4, 8, or 12.5 mA) and enabling or disabling MAR. Five observers assessed mesial and distal surfaces using a 5-point scale. Multi-way analysis of variance was employed for data comparison, with P<0.05 indicating statistical significance. Results: The area under the curve (AUC) varied from 0.40 to 0.60 (sensitivity: 0.28-0.45, specificity: 0.44-0.80). The diagnostic accuracy was not significantly affected by the presence of a metal crown, milliamperage, or MAR(P>0.05). However, the overall AUC and specificity were significantly lower for surfaces near a crown (P<0.05). Conclusion: CBCT-based caries detection was not influenced by the presence of a metal crown, variations in milliamperage, or MAR activation. However, the diagnostic accuracy was low and was further diminished for surfaces near a crown. Consequently, CBCT is not recommended for the detection of incipient caries lesions.

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja;Huh, Kyung-Hoe;YI, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제42권1호
    • /
    • pp.25-33
    • /
    • 2012
  • Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

Application of a newly developed software program for image quality assessment in cone-beam computed tomography

  • de Oliveira, Marcus Vinicius Linhares;Santos, Antonio Carvalho;Paulo, Graciano;Campos, Paulo Sergio Flores;Santos, Joana
    • Imaging Science in Dentistry
    • /
    • 제47권2호
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose: The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. Materials and Methods: A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. Results: The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. Conclusion: This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

콘빔형 전산화단층영상을 이용한 치과임플란트 식립유도장치 개발 (Surgical stent for dental implant using cone beam CT images)

  • 최형수;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제40권4호
    • /
    • pp.171-178
    • /
    • 2010
  • Purpose : The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Materials and Methods : Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Results : Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. Conclusion : The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

Use of preoperative cone-beam computed tomography to aid in establishment of endodontic working length: A systematic review and meta-analysis

  • Paterson, Andrew;Franco, Vittorio;Patel, Shanon;Foschi, Federico
    • Imaging Science in Dentistry
    • /
    • 제50권3호
    • /
    • pp.183-192
    • /
    • 2020
  • Purpose: This study was performed to assess the accuracy of preoperative cone-beam computed tomography (CBCT), when justified for other reasons, in locating the apical foramen and establishing the working length. Materials and Methods: Six electronic databases were searched for studies on this subject. All studies, of any type, were included if they compared measurements of working length with preoperative CBCT to measurements using an electronic apex locator (EAL) or histological reference standard. Due to the high levels of heterogeneity, an inverse-variance random-effects model was chosen, and weighted mean differences were obtained with 95% confidence intervals and P values. Results: Nine studies were included. Compared to a histological reference standard, CBCT indicated that the apical foramen was on average 0.40 mm coronal of its histological position, with a mean absolute difference of 0.48 mm. Comparisons were also performed to an EAL reference standard, but the conclusions could not be considered robust due to high levels of heterogeneity in the results. Conclusion: A low level of evidence is produced suggesting that preoperative CBCT shows the apical foramen to be on average 0.40 mm coronal to its histological position, with a mean absolute difference of 0.48 mm.

Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection

  • Saberi, Bardia Vadiati;Khosravifard, Negar;Ghandari, Farnaz;Hadinezhad, Arash
    • Imaging Science in Dentistry
    • /
    • 제49권4호
    • /
    • pp.265-272
    • /
    • 2019
  • Purpose: To compare the diagnostic accuracy of cone-beam computed tomography (CBCT) with that of parallel(PPA) and oblique projected periapical(OPA) radiography for the detection of different types of peri-implant bone defects. Materials and Methods: Forty implants inserted into bovine rib blocks were used. Thirty had standardized bone defects(10 each of angular, fenestration, and dehiscence defects), and 10 were defect-free controls. CBCT, PPA, and OPA images of the samples were acquired. The images were evaluated twice by each of 2 blinded observers regarding the presence or absence and the type of the defects. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were determined for each radiographic technique. The 3 modalities were compared using the Fisher exact and chi-square tests, with P<0.05 considered as statistical significance. Results: High inter-examiner reliability was observed for the 3 techniques. Angular defects were detected with high sensitivity and specificity by all 3 modalities. CBCT and OPA showed similar AUC and sensitivity in the detection of fenestration defects. In the identification of dehiscence defects, CBCT showed the highest sensitivity, followed by OPA and PPA, respectively. CBCT and OPA had a significantly greater ability than PPA to detect fenestration and dehiscence defects(P<0.05). Conclusion: The application of OPA radiography in addition to routine PPA imaging as a radiographic follow-up method for dental implantation greatly enhances the visualization of fenestration and dehiscence defects. CBCT properly depicted all defect types studied, but it involves a relatively high dose of radiation and cost.

Three-dimensional comparison of 2 digital models obtained from cone-beam computed tomographic scans of polyvinyl siloxane impressions and plaster models

  • Park, Jin-Yi;Kim, Dasomi;Han, Sang-Sun;Yu, Hyung-Seog;Cha, Jung-Yul
    • Imaging Science in Dentistry
    • /
    • 제49권4호
    • /
    • pp.257-263
    • /
    • 2019
  • Purpose: This study was performed to evaluate the dimensional accuracy of digital dental models constructed from cone-beam computed tomographic (CBCT) scans of polyvinyl siloxane (PVS) impressions and cast scan models. Materials and Methods: A pair of PVS impressions was obtained from 20 subjects and scanned using CBCT (resolution, 0.1 mm). A cast scan model was constructed by scanning the gypsum model using a model scanner. After reconstruction of the digital models, the mesio-distal width of each tooth, inter-canine width, and inter-molar width were measured, and the Bolton ratios were calculated and compared. The 2 models were superimposed and the difference between the models was measured using 3-dimensional analysis. Results: The range of mean error between the cast scan model and the CBCT scan model was -0.15 mm to 0.13 mm in the mesio-distal width of the teeth and 0.03 mm to 0.42 mm in the width analysis. The differences in the Bolton ratios between the cast scan models and CBCT scan models were 0.87 (anterior ratio) and 0.72 (overall ratio), with no significant difference (P>0.05). The mean maxillary and mandibular difference when the cast scan model and the CBCT scan model were superimposed was 53 ㎛. Conclusion: There was no statistically significant difference in most of the measurements. The maximum tooth size difference was 0.15mm, and the average difference in model overlap was 53 ㎛. Digital models produced by scanning impressions at a high resolution using CBCT can be used in clinical practice.