• 제목/요약/키워드: accident analysis model

검색결과 847건 처리시간 0.035초

소규모 냉각재 상실사고하의 원자로 압력용기에 대한 확률론적 파괴역학 평가 (Evaluation of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under SBLOCA)

  • 김종욱;이규만;김태완
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.13-19
    • /
    • 2008
  • In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT.

  • PDF

중고 자동차 선택시 구매경로별 선호속성에 관한 융합적 시각 (A Convergent Perspective on Preference Attributes by Purchase Channel Choosing Used Cars)

  • 변현수
    • 한국융합학회논문지
    • /
    • 제8권3호
    • /
    • pp.215-223
    • /
    • 2017
  • 본 연구는 중고차 시장에 있어서 온라인 및 오프라인 거래시 고객의 선호도 차이를 확인해 보는 것을 목적으로 하였다. 이를 위해 컨조인트 기법을 이용하여 중고차 거래시 중요한 영향을 미치는 속성에 대한 조사를 실행하였다. 컨조인트 분석은 개별 제품이나 서비스를 구성하는 여러 속성 중 가치있는 것을 판별하는 데에 적합한 기법이다. 연구결과 오프라인 시장에서의 중고차 거래시에는 제조사, 차종, 가격, 연식, 주행거리의 순으로 중요도가 높았으며, 온라인 시장에서는 제조사, 신뢰, 가격, 웹사이트 구성, 사고 여부의 순으로 중요도가 높게 나타나는 것을 확인하였다. 따라서 중고차 거래시 구매경로에 따라 고객의 선호 속성이 다르게 나타나는 점과 각 구매경로별로 중요한 속성에 대한 관심과 주의가 필요하다는 것을 알 수 있었다. 중고차 시장이 신차 시장 못지 않게 중요한 시장으로 성장하고 있는 현실을 감안할 때 향후 중고차 시장에 대한 이해를 통해 사업구상이나 정책 개발 등으로 이어질 필요가 있을 것이다.

도시가스 배관의 위험평가 방법론 제시 (An Approach to Risk Assessment of City Gas Pipeline)

  • 박교식;이진한;조영도;박진희
    • 한국가스학회지
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2003
  • 본 연구에서는 위험을 등급화하여 검사대상 및 주기를 결정하여 투자비용기 효용성을 높이는 기술의 접근방법을 도입하여, 위험의 정도뿐만 아니라 위험의 양(손실비용)을 평가 할 수 있는 활용 방법을 제시하였다. 위험의 정량화를 위해 가스배관의 손상확률과 영향을 예측하는 방법이 필요한데 손상확률의 경우 사고원인을 굴착공사, 외부부식, 지반침하 및 장치손상으로 구분하였고, 그 각각의 원인에 대해 사고발생빈도를 구하는 방법을 제시하였으며 영향을 예측하기 위하여 가스의 누출시 주로 피해를 유발하는 화제에 대해 사망, 화상 및 건물에 피해를 줄 수 있는 경우 그 피해범위를 산정하는 방법을 제시하였다. 또한, 이 확률과 영향을 결합하여 위험비용을 예측하는 방법과 그 결과를 예시하였는데 이 기술은 경제적인 측면을 고려한 종합적 안전관리 기술로서 위험관리가 중요한 도시가스업계에 적용된다면, 위험을 줄일 수 있는 최적의 위험감소 전략 수립에 유용한 정보를 제공할 수 있다.

  • PDF

Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling

  • Song, Mengchu;Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.542-552
    • /
    • 2018
  • Operators face challenges to plan alternative countermeasures when no procedure exists to address the current plant state. A model-based approach is desired to aid operators in acquiring plant resources and deriving response plans. Multilevel flow modeling (MFM) is a functional modeling methodology that can represent intentional knowledge about systems, which is essential in response planning. This article investigates the capabilities of MFM to plan alternatives. It is concluded that MFM has a knowledge capability to represent alternative means that are designed for given ends and a reasoning capability to identify alternative functions that can causally influence the goal achievement. The second capability can be applied to find originally unassociated means to achieve a goal. This is vital in a situation where all designed means have failed. A technique of procedure synthesis can be used to express identified alternatives as a series of operations. A case of station blackout occurring at the boiling water reactor is described. An MFM model of a boiling water reactor is built according to the analysis of goals and functions. The accident situations are defined by the model, and several alternative countermeasures in terms of operating procedures are generated to achieve the goal of core cooling.

사고 위험성을 고려한 운행중지 결정 모형 (A Forecasting and Decision Model that Incorporates Accident Risks)

  • 양희중;이근부;오세호
    • 산업경영시스템학회지
    • /
    • 제27권4호
    • /
    • pp.1-6
    • /
    • 2004
  • 사고 위험성을 고려한 예측 및 의사결정 모형을 구축한다. 시스템을 즉시 운행중지 할 것인지 혹은 계획된 일정기간을 더 운행 한 후 다시 의사결정을 내릴 것인지를 판단하는 방법론에 대해 연구한다. 의사결정을 내리는데 있어서 비용 및 위험에 대한 새로운 정보가 입수되는 대로 이를 반영한다. 예측 모형을 통해 분석된 결과들을 활용해 보다 나은 의사결정을 내리는 방법에 대해 연구한다.

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul;Han, Sangbae
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.917-925
    • /
    • 2022
  • Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.

Development and validation of fuel stub motion model for the disrupted core of a sodium-cooled fast reactor

  • Kawada, Kenichi;Suzuki, Tohru
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3930-3943
    • /
    • 2021
  • To improve the capability of the SAS4A code, which simulates the initiating phase of core disruptive accidents for MOX-fueled Sodium-cooled Fast Reactors (SFRs), the authors have investigated in detail the physical phenomena under unprotected loss-of-flow (ULOF) conditions in a previous paper (Kawada and Suzuki, 2020) [1]. As the conclusion of the last article, fuel stub motion, in which the residual fuel pellets would move toward the core central region after fuel pin disruption, was identified as one of the key phenomena to be appropriately simulated for the initiating phase of ULOF. In the present paper, based on the analysis of the experimental data, the behaviors related to the stub motion were evaluated and quantified by the author from scratch. A simple model describing fuel stub motion, which was not modeled in the previous SAS4A code, was newly proposed. The applicability of the proposed model was validated through a series of analyses for the CABRI experiments, by which the stub motion would be represented with reasonable conservativeness for the reactivity evaluation of disrupted core.

자율주행 자동차 안전성 확보를 위한 RSS 모델 및 ISO/DIS 21448 (SOTIF) 통합 프로세스 구축에 관한 선행연구 (On the Integrated process of RSS model and ISO / DIS 21448 (SOTIF) for securing autonomous vehicle safety)

  • 김민중;김동현;김영민
    • 시스템엔지니어링학술지
    • /
    • 제17권2호
    • /
    • pp.129-138
    • /
    • 2021
  • Today, as the number of vehicles equipped with autonomous driving functions increases, the use of various sensors increases, and the complexity of system configuration increases. The ISO 26262 standard was published to prevent caused by systematic errors. Recently, the issue of external environmental factors rather than mechanical failure has increased. This issue is a problem outside of the scope of ISO 26262, and the ISO/DIS 21448 standard was published to solve this problem. Also, Mobileye proposed the RSS model that defined safe distance for dangerous situations in order to secure the safety of autonomous vehicles and who is responsible in case of an accident. In this paper, integrated process of ISO 21448 and RSS model, and through these results, we expect that possible to contribute to securing the safety and reliability of autonomous vehicles in the future.

Development and validation of diffusion based CFD model for modelling of hydrogen and carbon monoxide recombination in passive autocatalytic recombiner

  • Bhuvaneshwar Gera;Vishnu Verma;Jayanta Chattopadhyay
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3194-3201
    • /
    • 2023
  • In water-cooled power reactor, hydrogen is generated in case of steam zirconium reaction during severe accident condition and later on in addition to hydrogen; CO is also generated during molten corium concrete interaction after reactor pressure vessel failure. Passive Autocatalytic Recombiners (PARs) are provided in the containment for hydrogen management. The performance of the PARs in presence of hydrogen and carbon monoxide along with air has been evaluated. Depending on the conditions, CO may either react with oxygen to form carbon dioxide (CO2) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. CFD analysis has been carried out to determine the effect of CO on catalyst plate temperature for 2 & 4% v/v H2 and 1-4% v/v CO with air at the recombiner inlet for a reported experiment. The results of CFD simulations have been compared with the reported experimental data for the model validation. The reaction at the recombiner plate is modelled based on diffusion theory. The developed CFD model has been used to predict the maximum catalyst temperature and outlet species concentration for different inlet velocity and temperatures of the mixture gas. The obtained results were used to fit a correlation for obtaining removal rate of carbon monoxide inside PAR as a function of inlet velocity and concentrations.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.