• Title/Summary/Keyword: access latency

Search Result 330, Processing Time 0.024 seconds

HTSC and FH HTSC: XOR-based Codes to Reduce Access Latency in Distributed Storage Systems

  • Shuai, Qiqi;Li, Victor O.K.
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.582-591
    • /
    • 2015
  • A massive distributed storage system is the foundation for big data operations. Access latency performance is a key metric in distributed storage systems since it greatly impacts user experience while existing codes mainly focus on improving performance such as storage overhead and repair cost. By generating parity nodes from parity nodes, in this paper we design new XOR-based erasure codes hierarchical tree structure code (HTSC) and high failure tolerant HTSC (FH HTSC) to reduce access latency in distributed storage systems. By comparing with other popular and representative codes, we show that, under the same repair cost, HTSC and FH HTSC codes can reduce access latency while maintaining favorable performance in other metrics. In particular, under the same repair cost, FH HTSC can achieve lower access latency, higher or equal failure tolerance and lower computation cost compared with the representative codes while enjoying similar storage overhead. Accordingly, FH HTSC is a superior choice for applications requiring low access latency and outstanding failure tolerance capability at the same time.

Variable latency L1 data cache architecture design in multi-core processor under process variation

  • Kong, Joonho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose a new variable latency L1 data cache architecture for multi-core processors. Our proposed architecture extends the traditional variable latency cache to be geared toward the multi-core processors. We added a specialized data structure for recording the latency of the L1 data cache. Depending on the added latency to the L1 data cache, the value stored to the data structure is determined. It also tracks the remaining cycles of the L1 data cache which notifies data arrival to the reservation station in the core. As in the variable latency cache of the single-core architecture, our proposed architecture flexibly extends the cache access cycles considering process variation. The proposed cache architecture can reduce yield losses incurred by L1 cache access time failures to nearly 0%. Moreover, we quantitatively evaluate performance, power, energy consumption, power-delay product, and energy-delay product when increasing the number of cache access cycles.

A Scheme for Reducing File Access Latency with File Migration in Mobile Computing Environments (이동 컴퓨터 환경에서 파일 이주를 이용한 접근 지연 감소 기법)

  • Han, Mun-Seok;Park, Sang-Yun;Eom, Yeong-Ik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.581-591
    • /
    • 2001
  • We consider some problems of remote file accesses of multiple clients in mobile computing environments. In this environment, user mobility affects file access latency. Mobile hosts have severe resource constraints in terms of limited size of non-volatile storage. Thus, the burden of computation and communication load raise file access latency. In this paper, we propose a scheme for reducing the file access latency through the file migration. The objective is to minimize of file accesses for all mobile hosts which delivering the file to clients as quickly as possible. We develope an on-demand scheme which determines when the file server should migrate files to another server, or when it should transfer files to mobile hosts. Using simulation, we examine the effects which parameters such as file access frequency, file size, mobility rate have on file system access latency. Through simulation results, we show that our proposed migration scheme is effective in reducing the access latency on the requested file of a mobile host with high access rate and low mobility.

  • PDF

Reduction of Read Access Latency by Invalid Hint in Directory-Based Cache Coherence Scheme (디렉토리를 이용한 캐쉬 일관성 유지 기법에서 무효화 힌트를 이용한 읽기 접근 시간 감소)

  • Oh, Seung-Taek;Rhee, Yun-Seok;Maeng, Seung-Ryoul;Lee, Joon-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.408-415
    • /
    • 2000
  • Large scale shared memory multiprocessors have suffered from large access latency to shared memory. The large latency partially stems from a feature of directory-based cache coherence schemes which require a shared memory access to be serviced at a home node of the memory block. The home visit results in three or more hops traversal for a memory read access. The traversal becomes much longer as a system scales up. In this paper, we propose a new cache coherence scheme that reduces read access latency. The proposed scheme exploits ideas of invalid hint. Invalid hint for a cache block means which node has invalidated the cache block before. Thus a read access request can be directly sent to and serviced by the node (called owner) without help of a home node. Execution-driven simulation is employed to evaluate performance of the proposed scheme. The simulation results show that read access latency and execution time are reduced.

  • PDF

Recent Trends in High-Speed and Virtualized Optical Access Technologies (광액세스 고속화 및 가상화 기술 동향)

  • Chung, HwanSeok;Ra, YongWook;Park, Chansung;Lee, Joon Ki
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.57-68
    • /
    • 2020
  • This paper reviews the recent trends in optical access technologies and their future directions. As the number of hyper-connected, ultra-low-latency, and hyper-realistic services increases, the wireless path has become shorter and the optical access network has become deeply penetrated into the end user. The optical access network continues to evolve through endless innovation via high-speed, ultra-low-latency, and abstraction/virtualization technologies.

Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks (실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안)

  • Jang, Ho;Jeong, Won-Suk;Lee, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.600-609
    • /
    • 2009
  • The traditional carrier sense multiple access (CSMA) protocol like IEEE 802.11 Distributed Coordination Function (DCF) does not handle the constraints adequately, leading to degraded delay latency and throughput as the network scales are enlarged. We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is like the randomized CSMA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to severaansimes latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely using network simulation package,caS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to delay latency.

Efficient Congestion Control Technique of Random Access and Grouping for M2M according to User Type on 3GPP LTE-A s (3GPP LTE-A 시스템 기반 사용자 특성에 따른 효율적 Random Access 과부하 제어 기술 및 M2M 그룹화)

  • Kim, Junghyun;Ji, Soonbae;You, Cheolwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.48-55
    • /
    • 2015
  • This paper studies how to solve a problem caused by M2M terminals sending a few data based on $3^{rd}$ Generation Partnership Project(3GPP) Long Term Evolution-Advanced(LTE-A) system and then it is analyzed, proposed, and introduced into the techniques. Especially, it is introduced solution for the lack of Random Access Channel and an increasing number of latency caused by countless M2M devices. It is proposed the technology for M2M grouping as well as allowable access probability according to user type. As it decreases the number of terminal by grouping M2M devices to try random access at PRACH, it can be reduced collision between Cellular users and M2M devices. So, it is proved that the proposed mechanism can solve the increasing average latency of random access on system coexisting Cellular users and M2M devices through simulations.

Wireless Technologies for Ultra Low Latency Communications (초저지연 서비스를 위한 무선 접속 기술)

  • Kim, Eunkyung;Park, Hyunseo;Lee, Anseok;Lee, Heesoo;Lee, Yuro;Kim, Taejoong
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.74-84
    • /
    • 2017
  • In wireless access networks, it is extremely important to provide high quality of real time and interactive services, including voice and video traffic. Furthermore, low latency communication is shifting toward new paradigm which enhances user's high quality of experience, meeting the requirements for specific applications such as tactile internet, remote-control robot and machines, and mission critical application. In this paper, we introduce the approaches to achieve the extremely low latency service. The approaches include the core requirements and the key technologies providing low latency communication maintaining high reliability in wireless access networks.

Game Theory-Based Scheme for Optimizing Energy and Latency in LEO Satellite-Multi-access Edge Computing

  • Ducsun Lim;Dongkyun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.7-15
    • /
    • 2024
  • 6G network technology represents the next generation of communications, supporting high-speed connectivity, ultra-low latency, and integration with cutting-edge technologies, such as the Internet of Things (IoT), virtual reality, and autonomous vehicles. These advancements promise to drive transformative changes in digital society. However, as technology progresses, the demand for efficient data transmission and energy management between smart devices and network equipment also intensifies. A significant challenge within 6G networks is the optimization of interactions between satellites and smart devices. This study addresses this issue by introducing a new game theory-based technique aimed at minimizing system-wide energy consumption and latency. The proposed technique reduces the processing load on smart devices and optimizes the offloading decision ratio to effectively utilize the resources of Low-Earth Orbit (LEO) satellites. Simulation results demonstrate that the proposed technique achieves a 30% reduction in energy consumption and a 40% improvement in latency compared to existing methods, thereby significantly enhancing performance.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.