• Title/Summary/Keyword: acceptor reaction

Search Result 160, Processing Time 0.027 seconds

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

  • Kim, Myo-Deok;Jung, Dong-Hyun;Seo, Dong-Ho;Jung, Jong-Hyun;Seo, Ean-Jeong;Baek, Nam-In;Yoo, Sang-Ho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1845-1854
    • /
    • 2016
  • The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.

Identification of Amino-Acids Residues for Key Role in Dextransucrase Activity of Leuconostoc mesenteroides B-742CB

  • Ryu, Hwa-Ja;Kim, Do-Man;Seo, Eun-Seong;Kang, Hee-Kyung;Lee, Jin-Ha;Yoon, Seung-Heon;Cho, Jae-Young;Robyt, John-F.;Kim, Do-Won;Chang, Suk-Sang;Kim, Seung-Heuk;Kimura, Atsuo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1075-1080
    • /
    • 2004
  • Dextransucrase (DSRB742) from Leuconostoc mesenteroides NRRL B-742CB is a glucosyltransferase that catalyzes the synthesis of dextran using sucrose, or the synthesis of oligosaccharides when acceptor molecules, like maltose, are present. The DSRB742 gene (dsrB742) was cloned and the properties were characterized. In order to identify critical amino acid residues, the DSRB742 amino acid sequence was aligned with glucosyltransferase sequences, and three amino acid residues reported as sucrose binding amino acids in Streptococcus glucosyltransferases were selected for site-directed mutagenesis experiments. Asp-533, Asp-536, and His-643 were independently replaced with Ala or Asn. D533A and D536A dextransucrases showed reduced dextran synthesis activities, 2.3% and 40.8% of DSRB742 dextransucrase, respectively, and D533N, D536N, H643A, end H643N dextransucrases showed complete suppression of dextran synthesis activities altogether. Additionally, D536N dextransucrase showed complete suppression of oligosaccharide synthesis activities. However, modifications at Asp-533 or at His-643 retained acceptor reaction activities in the range of 8.4% to 21.3% of DSRB742 acceptor reaction activity. Thus at least two carboxyl groups of Asp-533 and Asp-536, and His-643 as a proton donor, are essential for the catalysis process.

Photocycloaddition Reaction of 1,2-Bispyrazylethylene to Tetracyanoethylene

  • Shim, Sang-Chul;Shim, Hyun-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.4
    • /
    • pp.123-126
    • /
    • 1980
  • Benzene solution of trans-1,2-bispyrazylethylene and electron deficient olefin, tetracyanoethylene, as a ${\pi}$-acceptor gave 1,2-bispyrazyl-3,3,4,4-tetracyanocyclobutane, a 2${\pi}$ + 2${\pi}$ cycloaddition product, on irradiation with 350 nm UV light. Fluorescence studies revealed the reaction to proceed through a singlet exciplex. The fluorescence of trans-1,2-bispyrazylethylene was quenched very efficiently by tetracyanoethylene with the quenching constant of 1.6 ${\times}$ 10$^{10}$M$^{-1}$s$^{-1}$ while electron rich olefin, tetramethylethylene, did not quench the fluorescence of bispyrazylethylene.

Theoretical Studies on the Potential Energy Profiles for Proton Transfer Reaction in Formamide Dimer

  • Young Shik Kong;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.488-491
    • /
    • 1989
  • Theoretical studies on the proton transfer reaction in a formamide dimer have been done by Ab initio SCF calculation. In this study, we have shown several effects on the potential energy profile of the proton transfer in a formamide dimer, such as the effect of a basis set, the effect of a geometry optimization, and the effect of a distance between proton-donor and proton-acceptor.

In vitro Effect of High Osmolality on Plasma Membrane Activities in the Spermatozoa (In Vitro 고삼투압이 정자 원형질막의 Protein Tyrosine Phosphorylation에 미치는 영향)

  • 오영근;장재호;최인호;정노팔;신형철;곽병주
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.237-244
    • /
    • 2000
  • It has been reported that plasma membrane activity of the spermatozoa may be susceptible to be influenced by extracellular osmolality and such membranous changes involve infracellular molecular changes, special regard to the structure of membranous lipids, and the accompanying ion-channel of which are closely related with their fluidity of $Ca^{2+}$ and HCO$^{-}_{3}$. It is of common recognition that a certain kind of sterol acceptor player an important to induce lipid fluctuation of the sperm plasma membrane which have been influenced by BSA administration and came in effect to outflow of cholesterol from the spermatozoa and resulted in changes of ionic fluidity to facilitate adenylyl cyclase, and to induce protein tyrosine phosphorylation by increase of cAMP and activation of PKA. Thus it seems likely that an augmentation of the acrosomal reaction is closely related with protein tyrosine phosphorylation. The following experimental results were obtained in the present study; Under the high osmolality conditions, the spermatozoa motility declined significantly and the structural change of the plasma membrane diminished to confirm that the response degrees to the osmolality depended upon the water transfer volume through the plasma membrane and the changes of cellular volume. Those experimental results suggest that a physiological parameter such as low temperature condition played an important role for presentation of spermatozoa and that inducement of spermatozoa activation for reinforcement of protein tyrosine phosphorylation. On the other hand, it seemed likely that the BSA administration as one of sterol accepters might represent a key role also under the high osmolality condition and their result also suggests that osmolality change, special regard to high osmolality condition may play an important role also in the processes of signal transmission.

  • PDF

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz;Michalak, Przemyslaw;Tachiya, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.795-802
    • /
    • 2012
  • Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

Characterization of Leuconostoc mesenteroides B-742CB Dextransucrase Expressed in Escherichia coli

  • Park, Mi-Ran;Ryu, Hwa-Ja;Kim, Do-Man;Choe, Jun-Yong;John F. Robyt
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.628-635
    • /
    • 2001
  • Recombinant E. coli DH5$\alpha$ harboring a dextransucrase gene (dsrB742) produced an extracellular dextransucrase in a 2% sucrose medium. The enzyme was purified by DEAE-Sepharose and Phenyl-Sepharose column chromatographies upto a 142.97-fold purification with a 11.11% recovery to near homogeneity. The enzyme had a calculated molecular mass of 168.6 kDa, which was in good agreement with the activity band of 170 kDa on a nondenaturing SDS-PAGE. An expression plasmid was constructed by inserting the dsrB742 into a pRSET expression vector. The activity after expression in E. coli BL21(DE3)pLysS increased about 6.7-fold compared to the extracellular dextransucrase from L. mesenteroides B-742CB. The expressed and purified enzyme from the clone showed similar biochemical properties (acceptor reaction, size of active dextransucrase, optimum pH, and temperature) to B-742CB dextransucrase, however, the ability to synthesize ${\alpha}$-(1$\rightarrow$3) branching decreased in comparison to that of L. mesenteroides B-742CB dextransucrase.

  • PDF

A Study on the Optical Properties of HgGa2S4 Single Crystal (HgGa2S4 단결정의 광학적 특성연구)

  • 이관교;이상열;강종욱;이봉주;김형곤;현승철;방태환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.969-974
    • /
    • 2003
  • HgGa$_2$S$_4$ single crystals were grown by the chemical transport reaction method. The HgGa$_2$S$_4$ single crystal crystallized into a defect chalcopyrite structure (I 4). The lattice constants of the single crystal were found to be a = 5.635 $\AA$ and c = 10.473 $\AA$. The direct and indirect optical energy gaps were found to be 2.84eV and 2.78eV, respectively. Photoluminescence peaks of HgGa$_2$S$_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

Optical properties of $HgGa_2S_4$ single crystal ($HgGa_2S_4$ 단결정의 광학적 특성)

  • Kim, H.G.;Kim, N.O.;Kim, B.C.;Choi, Y.I.;Kim, D.T.;Hyun, S.C.;Bang, T.H.;Lee, K.S.;Gu, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.47-52
    • /
    • 2004
  • $HgGa_2S_4$ single crystals were grown by the chemical transport reaction method. The $HgGa_2S_4$ single crystal crystallized into a defect chalcopyrite structure $(I\bar{4})$. The lattice constants of the single crystal were found to be a=5.635 ${\AA}$ and c=10.473 ${\AA}$. The direct and indirect optical energy gaps were found to be 2.84 eV and 2.78 eV, respectively. Photoluminescence peaks of $HgGa_2S_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

  • PDF

Synthesis of Aesculetin and Aesculin Glycosides Using Engineered Escherichia coli Expressing Neisseria polysaccharea Amylosucrase

  • Park, Soyoon;Moon, Keumok;Park, Cheon-Seok;Jung, Dong-Hyun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.566-570
    • /
    • 2018
  • Because glycosylation of aesculetin and its 6-glucoside, aesculin, enhances their biological activities and physicochemical properties, whole-cell biotransformation and enzymatic synthesis methodologies using Neisseria polysaccharea amylosucrase were compared to determine the optimal production method for glycoside derivatives. High-performance liquid chromatography analysis of reaction products revealed two glycosylated products (AGG1 and AGG2) when aesculin was used as an acceptor, and three products (AG1, AG2, and AG3) when using aesculetin. The whole-cell biotransformation production yields of the major transfer products for each acceptor (AGG1 and AG1) were 85% and 25%, respectively, compared with 68% and 14% for enzymatic synthesis. These results indicate that whole-cell biotransformation is more efficient than enzymatic synthesis for the production of glycoside derivatives.