• 제목/요약/키워드: acceptor reaction

검색결과 160건 처리시간 0.032초

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

  • Kim, Myo-Deok;Jung, Dong-Hyun;Seo, Dong-Ho;Jung, Jong-Hyun;Seo, Ean-Jeong;Baek, Nam-In;Yoo, Sang-Ho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1845-1854
    • /
    • 2016
  • The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.

Identification of Amino-Acids Residues for Key Role in Dextransucrase Activity of Leuconostoc mesenteroides B-742CB

  • Ryu, Hwa-Ja;Kim, Do-Man;Seo, Eun-Seong;Kang, Hee-Kyung;Lee, Jin-Ha;Yoon, Seung-Heon;Cho, Jae-Young;Robyt, John-F.;Kim, Do-Won;Chang, Suk-Sang;Kim, Seung-Heuk;Kimura, Atsuo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1075-1080
    • /
    • 2004
  • Dextransucrase (DSRB742) from Leuconostoc mesenteroides NRRL B-742CB is a glucosyltransferase that catalyzes the synthesis of dextran using sucrose, or the synthesis of oligosaccharides when acceptor molecules, like maltose, are present. The DSRB742 gene (dsrB742) was cloned and the properties were characterized. In order to identify critical amino acid residues, the DSRB742 amino acid sequence was aligned with glucosyltransferase sequences, and three amino acid residues reported as sucrose binding amino acids in Streptococcus glucosyltransferases were selected for site-directed mutagenesis experiments. Asp-533, Asp-536, and His-643 were independently replaced with Ala or Asn. D533A and D536A dextransucrases showed reduced dextran synthesis activities, 2.3% and 40.8% of DSRB742 dextransucrase, respectively, and D533N, D536N, H643A, end H643N dextransucrases showed complete suppression of dextran synthesis activities altogether. Additionally, D536N dextransucrase showed complete suppression of oligosaccharide synthesis activities. However, modifications at Asp-533 or at His-643 retained acceptor reaction activities in the range of 8.4% to 21.3% of DSRB742 acceptor reaction activity. Thus at least two carboxyl groups of Asp-533 and Asp-536, and His-643 as a proton donor, are essential for the catalysis process.

Photocycloaddition Reaction of 1,2-Bispyrazylethylene to Tetracyanoethylene

  • Shim, Sang-Chul;Shim, Hyun-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제1권4호
    • /
    • pp.123-126
    • /
    • 1980
  • Benzene solution of trans-1,2-bispyrazylethylene and electron deficient olefin, tetracyanoethylene, as a ${\pi}$-acceptor gave 1,2-bispyrazyl-3,3,4,4-tetracyanocyclobutane, a 2${\pi}$ + 2${\pi}$ cycloaddition product, on irradiation with 350 nm UV light. Fluorescence studies revealed the reaction to proceed through a singlet exciplex. The fluorescence of trans-1,2-bispyrazylethylene was quenched very efficiently by tetracyanoethylene with the quenching constant of 1.6 ${\times}$ 10$^{10}$M$^{-1}$s$^{-1}$ while electron rich olefin, tetramethylethylene, did not quench the fluorescence of bispyrazylethylene.

Theoretical Studies on the Potential Energy Profiles for Proton Transfer Reaction in Formamide Dimer

  • Young Shik Kong;Mu Shik Jhon
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.488-491
    • /
    • 1989
  • Theoretical studies on the proton transfer reaction in a formamide dimer have been done by Ab initio SCF calculation. In this study, we have shown several effects on the potential energy profile of the proton transfer in a formamide dimer, such as the effect of a basis set, the effect of a geometry optimization, and the effect of a distance between proton-donor and proton-acceptor.

In Vitro 고삼투압이 정자 원형질막의 Protein Tyrosine Phosphorylation에 미치는 영향 (In vitro Effect of High Osmolality on Plasma Membrane Activities in the Spermatozoa)

  • 오영근;장재호;최인호;정노팔;신형철;곽병주
    • 대한의생명과학회지
    • /
    • 제6권4호
    • /
    • pp.237-244
    • /
    • 2000
  • 정자의 원형질막은 삼투압에 의해서 영향을 받는다고 보고되고 있다. 이중 세포막내 분자구조의 변화 특히 막지질 구조의 변화와 동반되는 이온채널의 변화 그리고 $Ca^{2+}$과 HCO$^{-}_{3}$의 유동성과도 밀접한 관련이 있는 것으로 보고되고 있다. 지금까지의 연구보고에 의하면, 정자의 첨체반웅 (acrosome reaction)이 일어날 경우 protein tyrosine phosphorylation이 증가되는데 이것은 cAMP, protein kinase A 둥을 통하여 작용되는 것으로 보고되고 있다. 막의 지질변화를 유도하는 물질로 일종의 sterol acceptor인 BSA가 알려져 있는 바, 실제로 BSA가 막지질 성분에 미치는 영향을 관찰한 결과 cholesterol이 유출되고 이온 둥의 유동성 변화가 일어나, 이 유동성 변화가 정자의 adenylyl cyclase를 활성화시켜 cAMP를 증가시키고, PKA가 활성화되어 결과적으로 protein tyrosine phosphorylation이 유도된다고 보는 것이다. 첨체반응과 protein tyrosine phosphorylation과는 밀접한 관계가 있는 것으로 사료되고 있다. 본 연구는 정자 원형질막에서 cholesterol이 유출되어 protein tyrosine phosphorylation이 유도될 때, BSA와 같은 sterol acceptor가 작용할 것이라는 전제하에, 고삼투압 하에서 탈수로 인해 원형질막이 위축되더라도 sterol acceptor가 존재한다면 막지질 성분의 구조적 변화가 억제될 수 있을 것이라는 가설을 설정하였다. 실험결과, 저온 및 고삼투압 하에서 정자운동은 감소되지만 원형질막의 구조적 변화는 없고, 삼투압에 대한 반응정도는 원형질막을 통한 수분이동과 세포공적 변화에 따라 비례적으로 일어난다고 하는 사실을 발견하였다. 이 결과는 정자보존에 있어서 저온변화에 영향을 미치는 여러 인자들 특히 protein tyrosine phosphorylation의 증가와 밀접한 관계가 있음을 시시해 준다. 또한 sterol acceptor로 알려진 BSA는 삼투압이 변화되더라도 역시 중요한 인자로 작용할 수 있음을 알 수 있었으며, 특히 고삼투압으로의 변화는 cAMP와 protein kinase A를 거치는 신호전달과정에 있어서 중요한 요인이라는 사실을 확인할 수 있었다.

  • PDF

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz;Michalak, Przemyslaw;Tachiya, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.795-802
    • /
    • 2012
  • Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

Characterization of Leuconostoc mesenteroides B-742CB Dextransucrase Expressed in Escherichia coli

  • Park, Mi-Ran;Ryu, Hwa-Ja;Kim, Do-Man;Choe, Jun-Yong;John F. Robyt
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.628-635
    • /
    • 2001
  • Recombinant E. coli DH5$\alpha$ harboring a dextransucrase gene (dsrB742) produced an extracellular dextransucrase in a 2% sucrose medium. The enzyme was purified by DEAE-Sepharose and Phenyl-Sepharose column chromatographies upto a 142.97-fold purification with a 11.11% recovery to near homogeneity. The enzyme had a calculated molecular mass of 168.6 kDa, which was in good agreement with the activity band of 170 kDa on a nondenaturing SDS-PAGE. An expression plasmid was constructed by inserting the dsrB742 into a pRSET expression vector. The activity after expression in E. coli BL21(DE3)pLysS increased about 6.7-fold compared to the extracellular dextransucrase from L. mesenteroides B-742CB. The expressed and purified enzyme from the clone showed similar biochemical properties (acceptor reaction, size of active dextransucrase, optimum pH, and temperature) to B-742CB dextransucrase, however, the ability to synthesize ${\alpha}$-(1$\rightarrow$3) branching decreased in comparison to that of L. mesenteroides B-742CB dextransucrase.

  • PDF

HgGa2S4 단결정의 광학적 특성연구 (A Study on the Optical Properties of HgGa2S4 Single Crystal)

  • 이관교;이상열;강종욱;이봉주;김형곤;현승철;방태환
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.969-974
    • /
    • 2003
  • HgGa$_2$S$_4$ single crystals were grown by the chemical transport reaction method. The HgGa$_2$S$_4$ single crystal crystallized into a defect chalcopyrite structure (I 4). The lattice constants of the single crystal were found to be a = 5.635 $\AA$ and c = 10.473 $\AA$. The direct and indirect optical energy gaps were found to be 2.84eV and 2.78eV, respectively. Photoluminescence peaks of HgGa$_2$S$_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

$HgGa_2S_4$ 단결정의 광학적 특성 (Optical properties of $HgGa_2S_4$ single crystal)

  • 김형곤;김남오;김병철;최영일;김덕태;현승철;방태환;이경섭;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2004
  • $HgGa_2S_4$ single crystals were grown by the chemical transport reaction method. The $HgGa_2S_4$ single crystal crystallized into a defect chalcopyrite structure $(I\bar{4})$. The lattice constants of the single crystal were found to be a=5.635 ${\AA}$ and c=10.473 ${\AA}$. The direct and indirect optical energy gaps were found to be 2.84 eV and 2.78 eV, respectively. Photoluminescence peaks of $HgGa_2S_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

  • PDF

Synthesis of Aesculetin and Aesculin Glycosides Using Engineered Escherichia coli Expressing Neisseria polysaccharea Amylosucrase

  • Park, Soyoon;Moon, Keumok;Park, Cheon-Seok;Jung, Dong-Hyun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.566-570
    • /
    • 2018
  • Because glycosylation of aesculetin and its 6-glucoside, aesculin, enhances their biological activities and physicochemical properties, whole-cell biotransformation and enzymatic synthesis methodologies using Neisseria polysaccharea amylosucrase were compared to determine the optimal production method for glycoside derivatives. High-performance liquid chromatography analysis of reaction products revealed two glycosylated products (AGG1 and AGG2) when aesculin was used as an acceptor, and three products (AG1, AG2, and AG3) when using aesculetin. The whole-cell biotransformation production yields of the major transfer products for each acceptor (AGG1 and AG1) were 85% and 25%, respectively, compared with 68% and 14% for enzymatic synthesis. These results indicate that whole-cell biotransformation is more efficient than enzymatic synthesis for the production of glycoside derivatives.