• 제목/요약/키워드: acceleration constraint

검색결과 85건 처리시간 0.029초

차륜 이동 로봇의 모터 구동 전압 제한 조건을 고려한 코너링(cornering) 모션의 최소 시간 궤적 계획 및 제어 (Near-Minimum-Time Cornering Trajectory Planning and Control for Differential Wheeled Mobile Robots with Motor Actuation Voltage Constraint)

  • 변용진;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.845-853
    • /
    • 2012
  • We propose time-optimal cornering motion trajectory planning and control algorithms for differential wheeled mobile robot with motor actuating voltage constraint, under piecewise constant control input condition. For time-optimal cornering trajectory generation, 1) we considered mobile robot's dynamics including actuator motors, 2) divided the cornering trajectory into one liner section, followed by two cornering section with angular acceleration and deceleration, and finally one liner section, and 3) formulated an efficient trajectory generation algorithm satisfying the bang-bang control principle. Also we proposed an efficient trajectory control algorithm and implemented with an X-bot to prove the performance.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

Time optimal trajectory planning for a robot system Under torque and impulse constraints.

  • Cho, Bang-Hyun;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1402-1407
    • /
    • 2004
  • Moving a fragile object from an initial point to a goal location in minimum time without damage is pursued in this paper. In order to achieve the goal, first of all, the range of maximum acceleration and velocity are specified, which the manipulator can generate dynamically on the path that is planned a priori considering the geometrical constraints. Later, considering the impulsive force constraint of the object, the range of maximum acceleration and velocity are going to be obtained to keep the object safe while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of the acceleration and velocity. This time optimal trajectory planning can be applied for real applications and is suitable for not only a continuous path but also a discrete path.

  • PDF

동역학이 고려된 두 대 로봇의 가속도 타원 해석 (Acceleration ellipsoid of two cooperating robots with the limits of joint torques)

  • 이지홍;이원희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2717-2720
    • /
    • 2003
  • A mathematical framework for deriving acceleration bounds from given joint torque limits of two cooperating robots are described in this paper. Especially when the torque limits are given in 2-norm, the resultant geometrical configuration is ellipsoid(the ellipsoid is often called manipulability ellipsoid in many works). At first, the mathematical derivation starts from the dynamics of both object and robots as well as the kinematics of the robots, and is finally arranged in a form of equation relating joint torques to object acceleration through a complete constraint contact(or “very-soft contact”). To show the usefulness of the proposed method, two examples are included, and especially the case where friction effects the ellipsoid shape is also considered In the example.

  • PDF

Time-optimal Trajectory Planning for a Robot System under Torque and Impulse Constraints

  • Cho, Bang-Hyun;Choi, Byoung-Suk;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, moving a fragile object from an initial point to a specific location in the minimum time without damage is studied. In order to achieve this goal, initially, the maximum acceleration and velocity ranges are specified. These ranges can be dynamically generate on the planned path by the manipulator. The path can be altered by considering the geometrical constraints. Later, considering the impulsive force constraint on the object, the range of maximum acceleration and velocity are obtained to preserve object safety while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of acceleration and velocity. This time-optimal trajectory planning can be applied to real applications and is suitable for both continuous and discrete paths.

Numerical Kinematic Analysis of the Standard Macpherson Motor-Vehicle Suspension System

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1961-1968
    • /
    • 2003
  • In this paper, an efficient numerical algorithm for the kinematic analysis of the standard MacPherson suspension system is presented. The kinematic analysis of the suspension mechanism is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the kinematic joints. Geometric constraints that fix the distances between the points belonging to the same rigid link are introduced. The nonlinear constraint equations are solved by iterative numerical methods. The corresponding linear equations of the velocity and acceleration are solved to yield the velocities and accelerations of the unknown points. The velocities and accelerations of other points of interest as well as the angular velocity and acceleration of any link in the mechanism can be calculated.

공동 작업하는 다중 로봇 시스템의 동적 조작도 (Dynamic Manipulability for Cooperating Multiple Robot Systems)

  • 심형원
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.930-939
    • /
    • 2004
  • In this paper, both dynamic constraints and kinematic constraints are considered for the analysis of manipulability of robotic systems comprised of multiple cooperating arms. Given bounds on the torques of each Joint actuator for every robot, the purpose of this study is to drive the bounds of task-space acceleration of object carried by the system. Bounds on each joint torque, described as a polytope, is transformed to the task-space acceleration through matrices related with robot dynamics, robot kinematics, object dynamics, grasp conditions, and contact conditions. A series of mathematical manipulations including the procedure calculating minimum infinite-norm solution of linear equation is applied to get the reachable acceleration bounds from given actuator dynamic constrains. Several examples including two robot systems as well as three robot system are shown with the assumptions of complete-constraint contact model(or' very soft contact') and insufficient or proper degree of freedom robot.

Opposition Based Differential Evolution Algorithm for Dynamic Economic Emission Load Dispatch (EELD) with Emission Constraints and Valve Point Effects

  • Thenmalar, K.;Ramesh, S.;Thiruvenkadam, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1508-1517
    • /
    • 2015
  • Optimal Power dispatch is the short-term decision of the optimal output of a number of power generation facilities, to meet the system demand, with the objective of Power dispatching at the lowest possible cost, subject to transmission lines power loss and operational constraints. The operational constraint includes power balance constraint, generator limit constraint, and emission dispatch constraint and valve point effects. In this paper, Opposition based Differential Evolution Algorithm (ODEA) has been proposed to handle the objective function and the operational constraints simultaneously. Furthermore, the valve point loading effects and transmission lines power loss are also considered for the efficient and effective Power dispatch. The ODEA has unique features such as self tuning of its control parameters, self acceleration and migration for searching. As a result, it requires very minimum executions compared with other searching strategies. The effectiveness of the algorithm has been validated through four standard test cases and compared with previous studies. The proposed method out performs the previous methods.

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.