• Title/Summary/Keyword: abutment-implant connection

Search Result 132, Processing Time 0.029 seconds

Influence of zirconia and titanium fixture materials on stress distribution in abutment screws: a three-dimensional finite element analysis (지르코니아 및 티타늄 고정체 소재가 지대주 나사의 응력 분포에 미치는 영향: 3차원 유한 요소 분석)

  • Kim, Eun Young;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.42-47
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the stability of abutment screws used with the zirconia fixture-based implant system and compare them with those used with the existing titanium fixture system via the finite element method. Methods: A single implant-supported restoration was designed for the finite element analysis. A universal analysis program was used to set 8 occlusal points along the direction to the long axis of the implant, and an occlusal load of 700 N was applied. Results: In all models (Zir and Ti-fixture model), the screw threads presented with the highest von Mises stress (VMS) values, whereas the head and end presented with the lowest VMS values. The VMS of the screw used in the zirconia-fixture model was 5.97% lower than that used in the titanium-fixture model (261.258 vs. 276.911 MPa, respectively) despite statistical significance. Furthermore, the zirconia fixture (352.912 MPa) had a higher stress value (8.42%) than the titanium fixture (332.331 MPa). In a completely tightened titanium fixture implant system, the stress was concentrated in the implant-abutment connection interface, the zirconia fixture presented with a stable stress distribution. Conclusion: Although the zirconia fixture demonstrated a high VMS value, owing to the stiffness and elasticity coefficients of the material, the stress generated in the abutment screws was similar in all models. In conclusion, the zirconia fixture-based implant system presented with a more stable stress distribution in the abutment screws than the titanium fixture-based implant system.

Mechanical analysis of conventional and small diameter conical implant abutments

  • Moris, Izabela Cristina Mauricio;Faria, Adriana Claudia Lapria;De Mattos, Maria Da Gloria Chiarello;Ribeiro, Ricardo Faria;Rodrigues, Renata Cristina Silveira
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.158-161
    • /
    • 2012
  • PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment. MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants ($3.5{\times}11$ mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at $45^{\circ}$ inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated.

Finite element analysis on the connection types of abutment and fixture (수종의 내부연결형 임플란트에서 연결부의 형태에 따른 응력분포의 유한요소 분석)

  • Jung, Byeong-Hyeon;Lee, Gyeong-Je;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Purpose: This study was performed to compare the stress distribution pattern of abutment-fixture connection area using 3-dimensional finite element model analysis when 5 different implant systems which have internal connection. Materials and methods: For the analysis, a finite element model of implant was designed to locate at first molar area. Stress distribution was observed when vertical load of 200 N was applied at several points on the occlusal surfaces of the implants, including center, points 1.5 mm, 3.0 mm away from center and oblique load of 200 N was applied $30^{\circ}$ inclined to the implant axis. The finite element model was analyzed by using of 3G. Author (PlassoTech, California, USA). Results: The DAS tech implant (internal step with no taper) showed more favorable stress distribution than other internally connected implants. AS compare to the situations when the loading was applied within the boundary of implants and an oblique loading was applied, it showed higher equivalent stress and equivalent elastic strain when the loading was applied beyond the boundary of implants. Regardless of loading condition, the abutments showed higher equivalent stress and equivalent elastic strain than the fixtures. Conclusion: When the occlusal contact is afforded, the distribution of stress varies depending on the design of connection area and the location of loading. More favorable stress distribution is expected when the contact load was applied within the diameter of fixtures and the DAS tech implant (internal step with no tapering) has more benefits than the other design of internally connected implants.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

Effect of connection type on the screw loosening of implant system (지대주와 고정체의 체결방법에 따른 임플란트의 풀림거동에 관한 연구)

  • Choi, Jae-Min;Chun, Heoung-Jae;Han, Chong-Hyeon;Lee, Soo-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.486-491
    • /
    • 2004
  • A comparative study on the implant screw loosening under the initial clamping force and cyclic loads was conducted. The experiments were performed to evaluate the screw loosening behavior of the internal and external implant systems. It was found that the screw loosening torques of implant systems were significantly affected by the way how the abutment and fixture were connected due to the difference in the load transfer mechanism between abutment and fixture.

  • PDF

Retrospective study of conical connection dental implant (Ankylos dental Implant). (Conical connection 임프란트(Ankylos dental implant)에 대한 후향적 임상연구)

  • Yang, Byoung-Eun;Song, Sang-Hun;Shim, Hye-Won;Lee, Sang-Min;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.44 no.11 s.450
    • /
    • pp.739-747
    • /
    • 2006
  • Objectives. The standardization of connection between fixture and abutment has not been defined. The success of dental implants was not always depends on connection. However, the connection mechanism is one of the most important things for dental implant treatment success. Most implant systems are very comparable in their design and engineering. They share many common characteristics and have similar strengths and weaknesses. Their significant weaknesses are connection, microgap and the resulting micromovement allowing bacterial contamination and bone loss. In the present study, we investigated the clinical performance of Ankylos implant (conical connection implant) Patients and Methods. The clinical performance of conical connection implant was studied under well-controlled clinical conditions. A total of 133 conical connection implants were placed in 50 patients from April 2005 to March 2006. The mean follow-up loading period of implants which was considered successful was 220$\pm$29 days. We recorded the age, sex, installation site, reason of edentulous region, bone density of installation site, diameter and length of dental implants and periods from installation to uncovering surgery using patients medical chart. Results Four Ankylos implants were lost during pre-loading period. 129 implants provided excellent clinical performance during 220$\pm$29 days on an average. The short-term success rate of this conical connection implant system was 96.99%.

  • PDF

Complication incidence of two implant systems up to six years: a comparison between internal and external connection implants

  • Chae, Sung-Wook;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study was conducted to compare the cumulative survival rates (CSRs) and the incidence of postloading complications (PLCs) between a bone-level internal connection system (ICS-BL) and an external connection system (ECS). Methods: The medical records of patients treated with either a ICS-BL or ECS between 2007 and 2010 at Asan Medical Center were reviewed. PLCs were divided into two categories: biological and technical. Biological complications included >4 mm of probing pocket depth, thread exposure in radiographs, and soft tissue complications, whereas technical complications included chipping of the veneering material, fracture of the implant, fracture of the crown, loosening or fracture of the abutment or screw, loss of retention, and loss of access hole filling material. CSRs were determined by a life-table analysis and compared using the log-rank chi-square test. The incidence of PLC was compared with the Pearson chi-squared test. Results: A total of 2,651 implants in 1,074 patients (1,167 ICS-BLs in 551 patients and 1,484 ECSs in 523 patients) were analyzed. The average observation periods were 3.4 years for the ICS-BLs and 3.1 years for the ECSs. The six-year CSR of all implants was 96.1% (94.9% for the ICS-BLs and 97.1% for the ECSs, P=0.619). Soft tissue complications were more frequent with the ECSs (P=0.005) and loosening or fracture of the abutment or screw occurred more frequently with the ICS-BLs (P<0.001). Conclusions: Within the limitations of this study, the ICS-BL was more prone to technical complications while the ECS was more vulnerable to biological complications.

Comparison of CAD/CAM abutment and prefabricated abutment in Morse taper internal type implant after cyclic loading: Axial displacement, removal torque, and tensile removal force

  • Yi, Yuseung;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.305-312
    • /
    • 2019
  • PURPOSE. The purpose of this study was to compare computer-aided design/computer-aided manufacturing (CAD/CAM) abutment and prefabricated abutment in Morse taper internal connection type implants after cyclic loading. MATERIALS AND METHODS. The study was conducted with internal type implants of two different manufacturers (Group Os, De). Fourteen assemblies were prepared for each manufacturer group and divided into 2 groups (n=7): prefabricated abutments (Os-P, De-P) and CAD/CAM abutments (Os-C, De-C). The amount of axial displacement and the removal torque values (RTVs) were measured before and after cyclic loading (106 cycles, 3 Hz with 150 N), and the tensile removal force to dislodge the abutments was measured after cyclic loading. A repeated measures ANOVA and a pattern analysis based on the logarithmic regression model were conducted to evaluate the effect of cyclic loading on the axial displacement. The Wilcoxon signed-rank test and the Mann-Whitney test was conducted for comparison of RTV reduction% and tensile removal forces. RESULTS. There was no significant difference between CAD/CAM abutments and prefabricated abutments in axial displacement and tensile removal force; however, significantly greater RTV reduction% after cyclic loading was observed in CAD/CAM abutments. The correlation among the axial displacement, the RTV, and the tensile removal force was not significant. CONCLUSION. The use of CAD/CAM abutment did not significantly affect the amount of axial displacement and tensile removal force, but presented a significantly greater removal torque reduction% than prefabricated abutments. The connection stability due to the friction at the abutment-implant interface of CAD/CAM abutments may not be different from prefabricated abutment.

Finite Element Analysis on the Supporting Bone according to the Connection Condition of Implant Prosthesis (임플란트 보철물의 연결 여부에 따른 유한요소응력분석)

  • Kang, Jae-Seok;Jeung, Jei-Ok;Lee, Seung-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The purpose of this study was to compare the stress distribution according to the splinting condition and non-splinting conditions on the finite element models of the two units implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on the mandibular 1st and 2nd molars. A cemented abutment and gold screw were used for superstructures. A FEA models assumed a state of optimal osseointegration, as the bone quality, inner cancellous bone and outer 2 mm compact bone was designed. This concluded that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. Splinting condition had 2 mm contact surface and non-splinting condition had $8{\mu}m$ gap between two implant prosthesis. Two group (Splinting and non-splinting) were loaded with 200 N magnitude in vertical axis direction and were divided with subdivision group. Subdivision group was composed of three loading point; Center of central fossa, the 2 mm and 4 mm buccal offset point from the central fossa. Von Mises stress value were recorded and compared in the fixture-bone interface and bucco-lingual sections. The results were as follows; 1. In the vertical loading condition of central fossa, splinting condition had shown a different von Mises stress pattern compared to the non-splinting condition, while the maximum von Mises stress was similar. 2. Stresses around abutment screw were more concentrated in the splinting condition than the non-splinting condition. As the distance from central fossa increased, the stress concentration increased around abutment screw. 3. The magnitude of the stress in the cortical bone, fixture, abutment and gold screw were greater with the 4 mm buccal offset loading of the vertical axis than with the central loading.

The non-linear FEM analysis of different connection lengths of internal connection abutment (내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석)

  • Lee, Yong-Sang;Kang, Kyoung-Tak;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.