• Title/Summary/Keyword: abutment-implant connection

Search Result 132, Processing Time 0.024 seconds

A VITRO STUDY OF RETAINED SCREW STABILITY BY VARIOUS CONNECTION DESIGNS BETWEEN FIXTURE AND ABUTMENT IN IMPLANT DENTISTRY (임플란트 고정체와 지대주 연결 형태의 차이에 따른 유지 나사 안정성에 대한 연구)

  • Yang Jae-Sik;Vang Mong-Sook;Jo Gyu-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • Statement of problem : Since the concept of osseointegrated dental implant by $Br{\aa}nemark$ et al was first applied to mandibular full edentulous patients. Recently it is considerated the first treatment option on missing teeth. A common problem associated with dental implant restorations is loosening of screws that retain the prosthesis to the abutment and the abutment to the implant fixture. Purpose : This study is to examine the influence on screw loosening of implant-abutment designs. Material and methods : External hex, cone screw, beveled hex, cam cylinder, cylinder hex by means of evaluating the loosening torques, with respect to a range of tightening torques after repeated loading. Result : 1. Cone screw, beveled hex groups are the highest initial tightening rate and cylinder hex, external hex groups are the lowest initial tightening rate (p < 0.05). 2. Cone screw groups are the highest after repeated loading tightening rate and cylinder hex groups are lowest after repeated loading tightening rate(p < 0.05). 3. Cone screw groups have the highest initial stability and anal stability. 4. All groups are decreased tightening rate after repeated loading.

Loosening behavior of Internal and External Connection Dental Implants under Cyclic Loads Considering Pre-fastening Force (체결력을 고려한 내부 및 외부연결형 임플란트의 반복 하중에 대한 풀림 연구)

  • Lee, Yongwoo;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • This paper presents the loosening behavior that occurs after the application of an external load to internal and external connection types of dental implants using the finite element method. We use fastening force between an abutment and a fixture to clamp the dental implant system; however, loosening and breakage may occur owing to cyclic external loads. In this study, we considered the initial fastening condition in the pre-load analysis and then investigated the change in stress and contact surface status when applying external loads. After the application of the initial fastening load, we verified that the internal connection-type model exhibited a relatively lower stress distribution than that of the external connection-type one. Moreover, we found that the former model showed a lower stress concentration after the application of the external load. In addition, after the application of this load, we found that the higher the shear load acting on the implant system, the higher the possibility of loosening. The study results showed the change in stress distribution and contact surface according to the connection type of the dental implants and the phenomenon of loosening by cyclic loads. We expect that the results of this study will be useful for the study of reliability and design of dental implant systems.

Finite Element Stress Analysis in Supporting Bone according to Crest Module Shape of Fixture in Internal Connection System (내측연결 시스템에서 임플란트 고정체의 경부 형태에 따른 지지골에서의 유한요소 응력분석)

  • Park, Young-Nam;Kim, Hee-Jung;Oh, Sang-Ho;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.55-74
    • /
    • 2006
  • The external contour of an implant can have significant effects on the load transfer characteristics and may result in different bone failure rates for different implant system. The purpose of this study was to investigate the effects of crest module shape and occlusal load direction on bone failure modes of five commercially available dental implant systems. Five different implant systems with internal connection; ITI (Model 1), Astra (Model 2), Bicon (Model 3), Friadent (Model 4), and Paragon (Model 5), comparable in size, but different in thread profile and cest module shapes, were compared using the finite element method. Conclusively, in the internal connection system of the implant-abutment connection methods, the stress-induced pattern at the supporting bone according to the abutment connection form had differenence among them, and implants with narrowing crestal module cross-sections at the top of the cortical bone created more favorable load transfer characteristics in this region. But it is considered that the future study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Concept and application of implant connection systems: Part II. Placement and restoration of external connection implant and tissue level implant (임플란트 연결부의 개념과 적용: Part 2. 안착형 외부 및 내부 연결형 임플란트의 식립과 보철)

  • Ko, Kyung-Ho;Kang, Hyeon-Goo;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.222-231
    • /
    • 2020
  • To use the external connection implant (EXT) appropriately, the inter-implant distance should be carefully considered during placement, and the bones raised above the implants should be trimmed during the second surgery. The hex abutment is more useful than the non-hex abutment. EXT is particularly useful when the inter-arch space is limited. The tissue level (TL, internal butt connection) implant has a biomechanical advantage of coronal wall thickness and a biological advantage of an inherent transmucosal smooth surface. During TL implant restoration, an abutment can be selected using the abutment and fixture margins with considerations for the inter-arch space. Since no single type of implant can satisfy all the cases, it is necessary to select the appropriate type, considering the occlusal force and the bone condition.

The effect of a titanium socket with a zirconia abutment on screw loosening after thermocycling in an internally connected implant: a preliminary study (내부연결 임플란트용 타이타늄 소켓을 이용한 지르코니아 지대주에서 열순환이 나사풀림에 미치는 영향: 예비연구)

  • Kyung, Kyu-Young;Cha, Hyun-Suk;Lee, Joo-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.114-118
    • /
    • 2017
  • Purpose: The aim of this study was to investigate the effects of a titanium component for the zirconia abutment in the internal connection implant system on screw loosening under thermocycling conditions. Materials and Methods: Internal connection titanium abutments and external connection zirconia abutments with titanium sockets were connected respectively to screw-shaped internal connection type titanium implants with 30 Ncm tightening. These implant-screw-abutment assemblies were divided into two groups of five specimens each; titanium abutments as control and zirconia abutments with titanium sockets as experimental group. The specimens were subjected to 2,000 thermocycles in water baths at $5^{\circ}C$ and $55^{\circ}C$, with 60 seconds of immersion at each temperature. The removal torque values (RTVs) of the abutment screws of the specimen were measured before and after thermocycling. RTVs pre- and post-thermocycling were investigated in statistics. Results: There was not screw loosening identified by tactile and visual inspection in any of the specimens during or after thermocycling. The mean RTV difference for the control group and the experimental group were $-1.34{\pm}2.53Ncm$ and $-1.26{\pm}2.06Ncm$, respectively. Statistical analysis using an independent t-test revealed that no significant differences were found in the mean RTV difference of the groups (P > 0.05). Conclusion: Within the limitations of this in vitro study, the titanium socket for the zirconia abutment did not show a significant effect on screw loosening under thermal stress compared to the titanium abutment in the internal connection implant.

Effects of Coronal Thread Pitch in Scalloped Implant with 2 Different Connections on Loading Stress using 3 Dimensional Finite Element Analysis (연결부 형태가 다른 두 가지 scallop 임플란트에서 경부 나사선 피치가 응력 분포에 미치는 영향 : 삼차원적유한요소분석)

  • Choi, Kyung-Soo;Park, Seong-Hun;Lee, Jae-Hoon;Huh, Jung-Bo;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Rotational tolerances of a titanium abutment in the as-received condition and after screw tightening in a conical implant connection

  • Prisco, Rosario;Troiano, Giuseppe;Laino, Luigi;Zhurakivska, Khrystyna
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.343-350
    • /
    • 2021
  • PURPOSE. The success of an implant-prosthetic rehabilitation is influenced by good implant health and an excellent implant-prosthetic coupling. The stability of implant-prosthetic connection is influenced by the rotational tolerance between anti-rotational features on the implant and those on the prosthetic component. The aim of this study is to investigate the rotational tolerance of a conical connection implant system and its titanium abutment counterpart, in various conditions. MATERIAL AND METHODS. 10 preparable titanium abutments, having zero-degree angulation (MegaGen, Daegu, Korea) with an internal 5-degree conical connection, and 10 implants (MegaGen, Daegu, Korea) were used. Rotational tolerance between the connection of implant and titanium abutments was measured through the use of a tridimensional optics measuring system (Quick Scope QS250Z, Mitutoyo, Kawasaki, Japan) in the as-received condition (Time 0), after securing with a titanium screw tightening at 35 Ncm (Time 1), after tightening 4 times at 35 Ncm (Time 2), after tightening one more time at 45 Ncm (Time 3), and after tightening another 4 times at 45 Ncm (Time 4). RESULTS. The group "Time 0" had the lowest values of rotational freedom (0.22 ± 0.76 degrees), followed by the group Time 1 (0.46 ± 0.83 degrees), the group Time 2 (1.01 ± 0.20 degrees), the group Time 3 (1.30 ± 0.85 degrees), and the group Time 4 (1.49 ± 0.17 degrees). CONCLUSION. The rotational tolerance of a conical connection is low in the "as received" condition but increases with repetitive tightening and with application of a torque greater than 35 Ncm.

I-shaped incisions for papilla reconstruction in second stage implant surgery

  • Lee, Eun-Kwon;Herr, Yeek;Kwon, Young-Hyuk;Shin, Seung-Il;Lee, Dong-Yeol;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.139-143
    • /
    • 2010
  • Purpose: Pink gingival esthetic especially on the anterior teeth has been an important success criterion in implant-supported restoration. Inter-implant papillae are a critical factor for implant esthetics, and various techniques for inter-implant papilla reconstruction have been introduced. The aim of this study is to suggest and evaluate a surgical technique for reconstructing inter-implant papillae. Methods: A 28-year-old man had an implant placed on the #13 and #14 area. Four months after implant placement, a second stage surgery was planned for inter-implant papilla reconstruction. At the time of the abutment connection, I-type incisions were performed on the #13i & #14i area followed by full-thickness flap elevation and connection of a healing abutment on underlying fixtures without suture. Results: Two weeks after the second stage implant surgery, soft tissue augmentation between the two implants was achieved. Conclusions: I-shaped incisions for papilla reconstruction performed during the second stage implant surgery were useful for inter-implant papilla reconstruction and showed a good esthetic result.

Influence of the connection design and titanium grades of the implant complex on resistance under static loading

  • Park, Su-Jung;Lee, Suk-Won;Leesungbok, Richard;Ahn, Su-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the resistance to deformation under static overloading by measuring yield and fracture strength, and to analyze the failure characteristics of implant assemblies made of different titanium grades and connections. MATERIALS AND METHODS. Six groups of implant assemblies were fabricated according to ISO 14801 (n=10). These consisted of the combinations of 3 platform connections (external, internal, and morse tapered) and 2 materials (titanium grade 2 and titanium grade 4). Yield strength and fracture strength were evaluated with a computer-controlled Universal Testing Machine, and failed implant assemblies were classified and analyzed by optical microscopy. The data were analyzed using the One-way analysis of variance (ANOVA) and Student's t-test with the level of significance at P=.05. RESULTS. The group $IT4_S$ had the significantly highest values and group IT2 the lowest, for both yield strength and fracture strength. Groups $IT4_N$ and ET4 had similar yield and fracture strengths despite having different connection designs. Group MT2 and group IT2 had significant differences in yield and fracture strength although they were made by the same material as titanium grade 2. The implant system of the similar fixture-abutment interfaces and the same materials showed the similar characteristics of deformation. CONCLUSION. A longer internal connection and titanium grade 4 of the implant system is advantageous for static overloading condition. However, it is not only the connection design that affects the stability. The strength of the titanium grade as material is also important since it affects the implant stability. When using the implant system made of titanium grade 2, a larger diameter fixture should be selected in order to provide enough strength to withstand overloading.