DOI QR코드

DOI QR Code

Rotational tolerances of a titanium abutment in the as-received condition and after screw tightening in a conical implant connection

  • Prisco, Rosario (Department of Clinical and Experimental Medicine, University of Foggia) ;
  • Troiano, Giuseppe (Department of Clinical and Experimental Medicine, University of Foggia) ;
  • Laino, Luigi (Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli) ;
  • Zhurakivska, Khrystyna (Department of Clinical and Experimental Medicine, University of Foggia)
  • Received : 2021.09.10
  • Accepted : 2021.11.23
  • Published : 2021.12.31

Abstract

PURPOSE. The success of an implant-prosthetic rehabilitation is influenced by good implant health and an excellent implant-prosthetic coupling. The stability of implant-prosthetic connection is influenced by the rotational tolerance between anti-rotational features on the implant and those on the prosthetic component. The aim of this study is to investigate the rotational tolerance of a conical connection implant system and its titanium abutment counterpart, in various conditions. MATERIAL AND METHODS. 10 preparable titanium abutments, having zero-degree angulation (MegaGen, Daegu, Korea) with an internal 5-degree conical connection, and 10 implants (MegaGen, Daegu, Korea) were used. Rotational tolerance between the connection of implant and titanium abutments was measured through the use of a tridimensional optics measuring system (Quick Scope QS250Z, Mitutoyo, Kawasaki, Japan) in the as-received condition (Time 0), after securing with a titanium screw tightening at 35 Ncm (Time 1), after tightening 4 times at 35 Ncm (Time 2), after tightening one more time at 45 Ncm (Time 3), and after tightening another 4 times at 45 Ncm (Time 4). RESULTS. The group "Time 0" had the lowest values of rotational freedom (0.22 ± 0.76 degrees), followed by the group Time 1 (0.46 ± 0.83 degrees), the group Time 2 (1.01 ± 0.20 degrees), the group Time 3 (1.30 ± 0.85 degrees), and the group Time 4 (1.49 ± 0.17 degrees). CONCLUSION. The rotational tolerance of a conical connection is low in the "as received" condition but increases with repetitive tightening and with application of a torque greater than 35 Ncm.

Keywords

Acknowledgement

We would like to cite the memory of our colleauge Dr. Paolo Vigolo, with acknowledgments for his intellectual heritage in field of prosthetic dentistry. We gratefully acknowledge MegaGen, Daegu, Korea for providing titanium abutments and implants for experiments.

References

  1. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/s0300-9785(81)80077-4
  2. Fischer K, Stenberg T. Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant-supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clin Implant Dent Relat Res 2012;14:808-15. https://doi.org/10.1111/j.1708-8208.2011.00389.x
  3. Lekholm U, Grondahl K, Jemt T. Outcome of oral implant treatment in partially edentulous jaws followed 20 years in clinical function. Clin Implant Dent Relat Res 2006;8:178-86. https://doi.org/10.1111/j.1708-8208.2006.00019.x
  4. Shalabi MM, Gortemaker A, Van't Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res 2006;85:496-500. https://doi.org/10.1177/154405910608500603
  5. Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000 2017;73:7-21. https://doi.org/10.1111/prd.12185
  6. Kano SC, Binon PP, Curtis DA. A classification system to measure the implant-abutment microgap. Int J Oral Maxillofac Implants 2007;22:879-85.
  7. Kitagawa T, Tanimoto Y, Odaki M, Nemoto K, Aida M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. J Biomed Mater Res B Appl Biomater 2005;75:457-63.
  8. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-32. https://doi.org/10.1016/S0022-3913(03)00212-9
  9. Chae SW, Kim YS, Lee YM, Kim WK, Lee YK, Kim SH. Complication incidence of two implant systems up to six years: a comparison between internal and external connection implants. J Periodontal Implant Sci 2015;45:23-9. https://doi.org/10.5051/jpis.2015.45.1.23
  10. Gracis S, Michalakis K, Vigolo P, Vult von Steyern P, Zwahlen M, Sailer I. Internal vs. external connections for abutments/reconstructions: a systematic review. Clin Oral Implants Res 2012;23:202-16. https://doi.org/10.1111/j.1600-0501.2012.02556.x
  11. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  12. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-7.
  13. Jemt T, Lekholm U, Grondahl K. 3-year followup study of early single implant restorations ad modum Branemark. Int J Periodontics Restorative Dent 1990;10:340-9.
  14. Becker W, Becker BE. Replacement of maxillary and mandibular molars with single endosseous implant restorations: a retrospective study. J Prosthet Dent 1995;74:51-5. https://doi.org/10.1016/S0022-3913(05)80229-X
  15. Goheen KL, Vermilyea SG, Vossoughi J, Agar JR. Torque generated by handheld screwdrivers and mechanical torquing devices for osseointegrated implants. Int J Oral Maxillofac Implants 1994;9:149-55.
  16. Lee FK, Tan KB, Nicholls JI. Critical bending moment of four implant-abutment interface designs. Int J Oral Maxillofac Implants 2010;25:744-51.
  17. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94.
  18. Michalakis KX, Calvani PL, Muftu S, Pissiotis A, Hirayama H. The effect of different implant-abutment connections on screw joint stability. J Oral Implantol 2014;40:146-52. https://doi.org/10.1563/AAID-JOI-D-11-00032
  19. Prisco R, Santagata M, Vigolo P. Effect of aging and porcelain sintering on rotational freedom of internal-hex one-piece zirconia abutments. Int J Oral Maxillofac Implants 2013;28:1003-8. https://doi.org/10.11607/jomi.2997
  20. Binon PP, McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. Int J Prosthodont 1996;9:511-9.
  21. Nelson K, Hildebrand D, Mehrhof J. Fabrication of a fixed retrievable implant-supported prosthesis based on electroforming: a technical report. J Prosthodont 2008;17:591-5. https://doi.org/10.1111/j.1532-849X.2008.00345.x
  22. Semper W, Kraft S, Kruger T, Nelson K. Theoretical considerations: implant positional index design. J Dent Res 2009;88:725-30. https://doi.org/10.1177/0022034509341172
  23. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Restor Dent 1993;13:409-31.
  24. Hernigou P, Queinnec S, Flouzat Lachaniette CH. One hundred and fifty years of history of the Morse taper: from Stephen A. Morse in 1864 to complications related to modularity in hip arthroplasty. Int Orthop 2013;37:2081-8. https://doi.org/10.1007/s00264-013-1927-0
  25. Bozkaya D, Muftu S. Efficiency considerations for the purely tapered interference fit (TIF) abutments used in dental implants. J Biomech Eng 2004;126:393-401. https://doi.org/10.1115/1.1784473
  26. Ricciardi Coppede A, de Mattos Mda G, Rodrigues RC, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study. Clin Oral Implants Res 2009;20:624-32. https://doi.org/10.1111/j.1600-0501.2008.01690.x
  27. Coppede AR, Bersani E, de Mattos Mda G, Rodrigues RC, Sartori IA, Ribeiro RF. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: an in vitro study. Int J Prosthodont 2009;22:283-6.
  28. Yao KT, Chen CS, Cheng CK, Fang HW, Huang CH, Kao HC, Hsu ML. Optimization of the conical angle design in conical implant-abutment connections: a pilot study based on the finite element method. J Oral Implantol 2018;44:26-35. https://doi.org/10.1563/aaid-joi-D-17-00149
  29. Blum K, Wiest W, Fella C, Balles A, Dittmann J, Rack A, Maier D, Thomann R, Spies BC, Kohal RJ, Zabler S, Nelson K. Fatigue induced changes in conical implant-abutment connections. Dent Mater 2015;31:1415-26. https://doi.org/10.1016/j.dental.2015.09.004
  30. Mishra SK, Chowdhary R, Kumari S. Microleakage at the different implant abutment interface: a systematic review. J Clin Diagn Res 2017;11:ZE10-5.
  31. Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Doring H, Nonhoff J. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A 2014;102:552-74. https://doi.org/10.1002/jbm.a.34709
  32. Tsuge T, Hagiwara Y, Matsumura H. Marginal fit and microgaps of implant-abutment interface with internal anti-rotation configuration. Dent Mater J 2008;27:29-34. https://doi.org/10.4012/dmj.27.29
  33. de Barros Carrilho GP, Dias RP, Elias CN. Comparison of external and internal hex implants' rotational freedom: a pilot study. Int J Prosthodont 2005;18:165-6.
  34. Salinas TJ. Anti-rotational features for osseointegrated implants. Pract Proced Aesthet Dent 2001;13:352.
  35. Garine WN, Funkenbusch PD, Ercoli C, Wodenscheck J, Murphy WC. Measurement of the rotational misfit and implant-abutment gap of all-ceramic abutments. Int J Oral Maxillofac Implants 2007;22:928-38.
  36. Semper W, Heberer S, Mehrhof J, Schink T, Nelson K. Effects of repeated manual disassembly and reassembly on the positional stability of various implant-abutment complexes: an experimental study. Int J Oral Maxillofac Implants 2010;25:86-94.
  37. Semper-Hogg W, Kraft S, Stiller S, Mehrhof J, Nelson K. Analytical and experimental position stability of the abutment in different dental implant systems with a conical implant-abutment connection. Clin Oral Investig 2013;17:1017-23. https://doi.org/10.1007/s00784-012-0786-1
  38. Binon PP. The evolution and evaluation of two interference-fit implant interfaces. Postgrad Dent 1996;3:3-13.
  39. Vigolo P, Fonzi F, Majzoub Z, Cordioli G. An in vitro evaluation of titanium, zirconia, and alumina procera abutments with hexagonal connection. Int J Oral Maxillofac Implants 2006;21:575-80.
  40. Lang LA, Wang RF, May KB. The influence of abutment screw tightening on screw joint configuration. J Prosthet Dent 2002;87:74-9. https://doi.org/10.1067/mpr.2002.121488
  41. Binon PP. Evaluation of machining accuracy and consistency of selected implants, standard abutments, and laboratory analogs. Int J Prosthodont 1995;8:162-78.
  42. Dittmer S, Dittmer MP, Kohorst P, Jendras M, Borchers L, Stiesch M. Effect of implant-abutment connection design on load bearing capacity and failure mode of implants. J Prosthodont 2011;20:510-6. https://doi.org/10.1111/j.1532-849X.2011.00758.x
  43. Rack T, Zabler S, Rack A, Riesemeier H, Nelson K. An in vitro pilot study of abutment stability during loading in new and fatigue-loaded conical dental implants using synchrotron-based radiography. Int J Oral Maxillofac Implants 2013;28:44-50. https://doi.org/10.11607/jomi.2748
  44. Dailey B, Jordan L, Blind O, Tavernier B. Axial displacement of abutments into implants and implant replicas, with the tapered cone-screw internal connection, as a function of tightening torque. Int J Oral Maxillofac Implants 2009;24:251-6.