• Title/Summary/Keyword: absorbed impact energy

Search Result 189, Processing Time 0.026 seconds

A Study on the Low Velocity Impact Response of Woven Fabric Composites for the Hybrid Composite Train Bodyshell (하이브리드 복합재 철도차량 차체 적용 적층판의 저속충격특성 연구)

  • Lee Jae-Hean;Cheong Seong-Kyun;Kim Jung-Seok
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2005
  • This paper presents a study on the low velocity impact response of the woven fabric laminates for the hybrid composite bodyshell of a tilting railway vehicle. In this study, the low velocity impact tests for the three laminates with size of $100mm\times100mm$ were conducted at three impact energy levels of 2.4J, 2.7J and 4.2J. Based on the tests, the impact force, the absorbed energy and the damaged area were investigated according to the different energy levels and the stacking sequences. The damage area was evaluated by the visual inspection and the C-scan device. The test results show that the absorbed energy of [fill]8 laminate is highest whereas (fill2/warp2)s is lowest. The [fill]8 laminate has the largest damage area because of the highest impact energy absorption.

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball (직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2000
  • A small diameter steel-ball impact experiment was performed to study the impact resistance of the surface of glass plates bonded with glass fabric/epoxy lamina. Five kinds of materials were used in this study: soda-lime glass plates, glass/epoxy lamina(one layer)-bonded and unbonded glass plates, glass/epoxy lamina(three layers)-bonded and unbonded glass plates. The range of impact velocity was 40 120m/s. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates. With increasing impact velocity, various types of surface cracks such as ring, cone, radial and lateral cracks took place in the interior near the impacted site of glass plates. The cracks drastically decreased with glass/epoxy lamina coating. The surface fracture behavior could be evaluated using the maximum stress and the absorbed fracture energy.

  • PDF

A Statistical Analysis on the Chemical Compositions & Mechanical Properties of Weathering Steels (내후성강재의 화학성분 및 기계적성질에 관한 통계적 분석)

  • Kyung, Kab Soo;Kwon, Soon Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The application in steel structures is increasing the mill sheet for the weathering steels by minimum maintenance cost in a life cycle cost. These have been collected and statistically analyzed to investigate chemical compositions, mechanical properties, weldability indices, weathering index and impact absorbed energy. From this study, although the band of dispersion in chernical compositions, mechanical properties and impact absorbed energy of the weathering steels appeared a little larger, the results revealed that these values have adequately satisfied the standard values of the Korean Standard. Furthermore, it was found that the weldability indices and the weathering index for the weathering steels have respectively satisfied the value prescribed by the Japanese Highway Specification and ASTM.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.

Low-velocity Impact Characterization of Laminated Composite Materials (복합재료의 저속충격 특성)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.34-37
    • /
    • 2008
  • The composite materials are widely used in the many applications of industry as well as aerospace field because of their high specific stiffness and strength which benefits the material and provides potential energy savings. However, composite materials also have a low property about external applied impact. In this paper, impact tests were conducted on different sample types(glass, carbon and kevlar composite) to obtain information such as absorbed energy and composite deformation using an instrumented impact test machine (DYNATUP 8250). 3 type samples were compared to experimental results. The data from impact test provided valuable information between the different type samples by wet lay up. This paper shows results of that kevlar composite has larger absorption energy and deformation than others.

Impact Energy Behavior in Composite Materials of Ankle Foot Orthosis (A.F.O.) (족부보장구(Ankle Foot Orthosis, A.F.O.)용 복합재료의 충격에너지 거동)

  • Kim, Cheol-Woong;Song, Sam-Hong;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.330-335
    • /
    • 2004
  • The needs of walking assistive device such as the Ankle Foot Orthosis (A.F.O.) are getting greater than before. However, most of the A.F.O. are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O. which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, $[0/90]_{2S}$) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

  • PDF

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

Irradiation Behavior of Reactor Pressure Vessel SA508 class 3 Steel Weld Metals (압력용기강재 SA508 class 3 용착금속의 조사거동)

  • Koh, Jin-Hyun;Park, Hyoung-Keun;Kim, Soo-Sung;Hwang, Yong-Hwa;Seo, Yun-Seok
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • Irradiation behavior of the reactor pressure vessel SA508 class 3 steel weld metals was examined by Charpy V Notch impact specimens. The specimens were exposed to a fluence of $2.8{\times}1019$ neutrons(n)/$cm^2$(E>1 MeV) at $288^{\circ}C$. The irradiation damage of weld metal was evaluated by comparison between unirradiated and irradiated specimens in terms of absorbed energy and lateral expansion. The specimens for neutron irradiation were welded by submerged arc welding process at a heat input of 3.2 kJ/mm which showed good toughness in terms of weld microstructure, absorbed energy and lateral expansion. The post-irradiation Charpy V notch 41J and 68J transition temperature elevation were $65^{\circ}C$ and $70^{\circ}C$, respectively. This elevation was accompanied by a 20% reduction in Charpy V notch upper shelf energy level. The lateral expansion at 0.9mm irradiated Charpy specimens showed temperature elevation of $65^{\circ}C$ and was greatly decreased due to radiation damage.

Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment (온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yongjun;Kook, Hyun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.