• Title/Summary/Keyword: abnormal power source

Search Result 35, Processing Time 0.021 seconds

Energy Demand Estimation in Metropolitan Area in Case of Emergency using Spatial Information (공간정보를 활용한 대도시권역 비상시 에너지 수요량 예측)

  • Nam, Gyeongmok;Lee, Hong Chul;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.3
    • /
    • pp.105-112
    • /
    • 2019
  • Due to abnormal high temperature, electric power demand has exceeded the backup power reserved for emergency case, hence, resulting in a major power outage. In today's overcrowded cities, the unexpected disruption in energy supply and demand is a major threat to the enormous economic damage and urban malfunctions. Existing methods for estimating the demand of the emergency power source do not lend themselves to predict the actual demand in the spatial dimension of the city. In addition, the reserve power is arbitrarily distributed in the case of emergency. This paper presents a method that predicts the emergency power demand using the spatial distribution of emergency power demand by applying the daily energy consumption intensity and emergency power demand according to urban spatial information and building use.

Reactor Coolant Pump Seal Monitoring System Using Statistical Modeling Techniques (통계적모델을 이용한 원자로냉각재펌프 밀봉장치 성능감시)

  • Lee, Song-Kyu;Chung, Chang-Kyu;Bae, Jong-Kil;Ahn, Sang-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1386-1390
    • /
    • 2007
  • This paper presents the equipment condition monitoring technology for the process or the equipment using statistical techniques. The equipment condition monitoring system consists of an empirical model to estimate the expected sensor values of process variables and a diagnose model to detect the abnormal condition and to identify the root source of the problem. The empirical model is constructed by the analysis of historic data. The diagnose model uses the sequential probability ratio test (SPRT) technique. The monitoring system was tested with real operating data acquired from the Reactor Coolant Pump Seal in the Nuclear Power Plant. It can detect the system degradation or failure at the early stage since it is able to catch the subtle deviation of process variables from normal condition.

  • PDF

A Basic Study on Electrostatic Induction Motor (II) (정전(靜電) 유도형(誘導型)모터의 기초연구(基礎硏究)(II))

  • Moon, Jae-Duk;Lee, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.699-702
    • /
    • 1992
  • A miniature size electrostatic induction motor have been constructed and studied by applying a three phase ac power source with a maximum voltage of 5 KV and a variable frequency ranged 0.0 - 150 Hz. A maximum no load speed of the motor tested was about 7600 RPM at the applied voltage of 4330 volt and the frequency of 130 Hz for the case of the rotor surface material of polyprophylene sheet screen-printed $TiO_2$ powder on it. It is found that there are 3 different regions of the motor operation, a rotor stop region, a stable operation region and a high speed abnormal region. And it is also found that the motor speed is influenced greatly by the charge relaxation time constant of the rotor surface materials, which however was changed by the means of vapour-deposited Ti or Ni and screen-printed $TiO_2$ powder on the surface of the rotor material, polyprophylene.

  • PDF

Application of Fault Location Method to Improve Protect-ability for Distributed Generations

  • Jang Sung-Il;Lee Duck-Su;Choi Jung-Hwan;Kang Yong-Cheol;Kang Sang-Hee;Kim Kwang-Ho;Park Yong-Up
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • This paper proposes novel protection schemes for grid-connected distributed generation (DG) units using the fault location algorithm. The grid-connected DG would be influenced by abnormal distribution line conditions. Identification of the fault location for the distribution lines at the relaying point of DG helps solve the problems of the protection relays for DG. The proposed scheme first identifies fault locations using currents and voltages measured at DG and source impedance of distribution networks. Then the actual faulted feeder is identified, applying time-current characteristic curves (TCC) of overcurrent relay (OCR). The method considering the fault location and TCC of OCR might improve the performance of the conventional relays for DG. Test results show that the method prevents the superfluous operations of protection devices by discriminating the faulted feeder, whether it is a distribution line where DG is integrated or out of the line emanated from the substation to which the DGs are connected.

A new perspective towards the development of robust data-driven intrusion detection for industrial control systems

  • Ayodeji, Abiodun;Liu, Yong-kuo;Chao, Nan;Yang, Li-qun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2687-2698
    • /
    • 2020
  • Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems (ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone for intrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks have a real and significant impact on the process variables. A limited number of researchers consider integrating process measurements. However, in complex systems, process variable changes could result from different combinations of abnormal occurrences. This paper examines recent advances in intrusion detection algorithms, their limitations, challenges and the status of their application in critical infrastructures. We also introduce the discussion on the similarities and conflicts observed in the development of machine learning tools and techniques for fault diagnosis and cybersecurity in the protection of complex systems and the need to establish a clear difference between them. As a case study, we discuss special characteristics in nuclear power control systems and the factors that constraint the direct integration of security algorithms. Moreover, we discuss data reliability issues and present references and direct URL to recent open-source data repositories to aid researchers in developing data-driven ICS intrusion detection systems.

Development of Partial Discharge Measuring System Module by use of Wide and Narrow Band (광대역 및 협대역을 동시에 사용하는 부분방전 측정 시스템 모듈 개발)

  • Lee, Jong Oh;Yu, Kyoung-Kook;Shin, In-Kwon;Chang, Doc-Jin;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.98-103
    • /
    • 2015
  • Power plant is that very high reliability when industrial and economic impact on the overall electric power system is required, it is essential to improve the reliability, especially the fault prediction diagnosis. Since an accident caused by the partial discharge in the power plant is above state has a faster response characteristic than the other indications in the case of any, the partial discharge generated in the power plant immediately detect the deterioration of insulation due to the accident of the power plant and the non-drawn It should prevent or reduce. Partial Discharge Measuring Systems for UHV SF6 Gas Insulated Switchgear and power transformer on site installed has some probability of abnormal recognition in case of non-flexible deal with on site noise. Many methode to eliminate these kinds of noises, UHF Detection System is chosen as purchase description in Korea, but this system having a bandwidth between 500MHz 1.5GHz wide band. Initial install periods(about 20 years ago), this band had no strong signal source, but in these days this wide band have strong signals, such as LTE. So, module described in this paper is designed as simultaneously use with wide and narrow band for solve this noise problem, and introduce this system.

Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안)

  • Lee, Sang-Jung;Kim, Myoung-Ho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

A Impact Analysis of Air Quality by Air Pollution Control Facilities Improvement on Point Source Pollution (점오염원의 대기오염방지시설 개선에 의한 대기질 영향 분석)

  • Jeon, Byeong-Geun;Lee, Sang-Houck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2876-2882
    • /
    • 2015
  • The object of this study is to identify changes in air pollution in the maximum ground level concentration and the surrounding area when air pollution control facilities are improved in the thermal power plants. The effects of improved facilities are analyzed by comparing air quality after applying improved air pollution control facilities. For prediction of air quality, the change of wind field can be represented with movement of Puff and CALPUFF Model, air pollution diffusion models which can implement abnormal conditions. Major air pollutants of thermal power plants such as $SO_2$, $NO_2$, and $PM_{10}$ are selected as prediction items. That results show that improvement of air pollution control facilities is significantly effective in reduction of air pollution of $SO_2$ and $NO_2$ in the maximum ground level concentration and areas around of thermal power plants. In the case of $PM_{10}$, it is found that the effect of reduction in pollution is high in the maximum ground level concentration, but the effect of reduction in air pollution is somewhat low in the area around of the thermal power plant.

A Case Study on MIL-STD-1760E based Test Bench Implementation for Aircraft-Weapon Interface Testing (항공기-무장간의 연동 시험을 위한 MIL-STD-1760E 기반 테스트 벤치 구축 사례 연구)

  • Kim, Tae-bok;Park, Ki-seok;Kim, Ji-hoon;Jung, Jae-won;Kwon, Byung-gi
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2018
  • In the case of aircraft-launched guided weapons, various interface tests such as MIL-STD-1760 based power source, discrete signal, MUX communication as well as BIT of missile can verify system safety and reliability. The purpose of this case study is to develop a test bench based on MIL-STD-1760E for interoperability testing between aircraft and weapons. We proposed a testing method of the launch sequence based on the defined TIME LINE in the development phase of the missile system from the application of the power of the missile to the targeting, the transfer order, and the missile separation process. Furthermore, it will be a reference model that can maximize the verification scope in the development phase of the air to surface missile system by simulating abnormal situation to the inert missile using the error insertion function.

An Optimized V&V Methodology to Improve Quality for Safety-Critical Software of Nuclear Power Plant (원전 안전-필수 소프트웨어의 품질향상을 위한 최적화된 확인 및 검증 방안)

  • Koo, Seo-Ryong;Yoo, Yeong-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • As the use of software is more wider in the safety-critical nuclear fields, so study to improve safety and quality of the software has been actively carried out for more than the past decade. In the nuclear power plant, nuclear man-machine interface systems (MMIS) performs the function of the brain and neural networks of human and consists of fully digitalized equipments. Therefore, errors in the software for nuclear MMIS may occur an abnormal operation of nuclear power plant, can result in economic loss due to the consequential trip of the nuclear power plant. Verification and validation (V&V) is a software-engineering discipline that helps to build quality into software, and the nuclear industry has been defined by laws and regulations to implement and adhere to a through verification and validation activities along the software lifecycle. V&V is a collection of analysis and testing activities across the full lifecycle and complements the efforts of other quality-engineering functions. This study propose a methodology based on V&V activities and related tool-chain to improve quality for software in the nuclear power plant. The optimized methodology consists of a document evaluation, requirement traceability, source code review, and software testing. The proposed methodology has been applied and approved to the real MMIS project for Shin-Hanul units 1&2.