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Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems
(ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone for
intrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks have
a real and significant impact on the process variables. A limited number of researchers consider inte-
grating process measurements. However, in complex systems, process variable changes could result from
different combinations of abnormal occurrences. This paper examines recent advances in intrusion
detection algorithms, their limitations, challenges and the status of their application in critical in-
frastructures. We also introduce the discussion on the similarities and conflicts observed in the devel-
opment of machine learning tools and techniques for fault diagnosis and cybersecurity in the protection
of complex systems and the need to establish a clear difference between them. As a case study, we
discuss special characteristics in nuclear power control systems and the factors that constraint the direct
integration of security algorithms. Moreover, we discuss data reliability issues and present references and
direct URL to recent open-source data repositories to aid researchers in developing data-driven ICS
intrusion detection systems.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction valve position change, pump control loss, sudden feed water loss

and the failure of safety-critical components as demonstrated by

Recently, digital devices are being introduced into industrial
control consoles to replace aging and obsolete analog control sys-
tems and to enhance the decision-making process. In cyber-
physical systems (CPS), the introduction of digital systems has
produced a network of safety components with programmable
logic controllers (PLCs), which provide information useful for
control optimization and lifespan extension. The shared compati-
bility of digital systems has led to the proliferation of IT devices in
monitoring CPS network data traffic. However, utilizing shared
devices exposed the traditional opacity common in legacy CPS
control, as the vulnerabilities associated with these digital systems
have been inherited by the safety systems and these cyber vul-
nerabilities partly account for the recent surge in cyber-attacks.
Moreover, cyber assaults on process control and monitoring sys-
tems could lead to a significant control failure such as spurious
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the Stuxnet worm attack [1], Davis-Besse nuclear plant attack [2]
and California system operator attack [3].

Recent developments in industrial data acquisition systems
have spurred a renewed interest in the utilization of data-driven
approaches to curb the rise of industrial cyber-attacks. Some ma-
chine learning-based intrusion detection systems (IDS) monitor
traffic and dataflow at the operating system (host intrusion
detection system - HIDS) or at the network level (network intrusion
detection system - NIDS) to detect attacks targeted at the host or
the network. For the HIDS development, the host-based packet
captures (PCAP) are preprocessed and applied in training the data-
driven model, while the NIDS utilizes the network layer informa-
tion for model development. However, the implementation of both
the host-based and network-based solutions in complex industrial
systems are limited because cyber-attacks have a real and signifi-
cant impact on the process variables or the physical system.
Conversely, some process-based intrusion detection systems (PIDS)
have also been developed using process measurements alone. This
approach has the same weakness as NIDS because analyzing the
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process change in isolation would not provide a significant clue
regarding the causal path.

In an attempt to improve the capability of existing IDS for so-
phisticated attack detection in cyber-physical systems, some re-
searchers have integrated both host/network traffic and process
layer information to develop a robust detection system. A major
drawback to adopting this approach is that in complex industrial
systems, process variable change could result from normal oper-
ating transients, incipient system fault, component degradation,
sensor drift, cyber-attacks, or the combination of a number of these
occurrences. The existing accounts fail to resolve the differences
between the process changes resulting from different initiating
events. This limitation results in an intrusion detection system with
a high false alarm rate, and the high false alarm rate has rendered
many of the proposed solutions un-implementable.

The primary goal of this paper is to introduce the discussion on
the similarities, conflicts, and limitations of the tools commonly
used by fault diagnosis and cybersecurity practitioners—two areas
that are having an increasing connection with the advancements in
machine learning (ML) and pattern recognition algorithms. This
paper is based on the following observations:

1. Similar datasets or signatures are being used to develop pattern
classification tools for detecting cyber-attacks (PIDS) and to di-
agnose faults in cyber-physical systems. We believe these tasks
are fundamentally different, and it is imperative to establish the
differences and domain-specific requirements necessary for the
effective implementation of the tools.

2. Many reported cyber-attacks carried out on cyber-physical
systems usually appear as system malfunction or fault injec-
tion, and there is a need to build a system with the capability to
recognize and recover from both incidents without compli-
cating the already complex system, and with no hindrance to
other safety-related functions.

3. Attackers are adaptive and dynamic. Tools developed to detect
adaptive attacks should be adaptive, as the attacker could
exploit the vulnerabilities discovered in the tools and under-
mine their effectiveness. Extending pattern classification theory
and design methods to security settings without considering the
adversarial influence is ineffective. Data can be manipulated by
attackers to undermine IDS functionality and attacks can be
directed at the IDS itself.

4. Pattern recognition systems commonly used in adversarial en-
vironments without a detailed threat assessment may result in
classification systems that exhibit vulnerabilities whose
exploitation may severely affect their performance and conse-
quently limit their practical utility.

These observations have severe implications for research that
utilizes system datasets for abnormal occurrence detection. To
extensively discuss the main thesis of this paper, we first present
a brief description and characteristics of the industrial SCADA
system and preliminaries on the existing ML algorithm in section
2. Then in section 3, we enumerate different data domains and
techniques used in the development of ML-based intrusion
detection systems for ICS with emphasis on the issues and lim-
itations of the resulting algorithms. As a case study, the nuclear
plant control system, its operating states and common system
signatures that are similar to the once obtainable during random
system fault and cyber-attacks are discussed. In section 4, we
describe IDS evaluation methods and discuss the reliability of the
dataset available to researchers, which is critical in the develop-
ment of a functional ML-based intrusion detection algorithm.
Section 5 is a discussion on proposed techniques and recom-
mendations for the development of an effective abnormal

occurrence detection system applicable to complex industrial
controllers.

2. Preliminaries
2.1. SCADA system

Supervisory Control and Data Acquisition (SCADA) has been
consistently defined to include embedded systems, sensors and
actuators used in monitoring and control of critical industrial and
national infrastructures such as smart grid, transportation net-
works, and power generating plants. Supervision, control and data
acquisition functions of SCADA are achieved by some computer-
based applications and networked devices. Automatic and user-
defined real-time monitoring and control of process measure-
ments are performed through remote terminal units (RTU), intel-
ligent field-programmable devices, and their networks.

Successfully implementing defense against cyber-attacks on
critical SCADA infrastructure depends on understanding the vul-
nerabilities attributed to the specific SCADA system. The SCADA
operating environment is characterized by special input voltage,
different mounting options, utilization of proprietary operating
system without security hardening, infrequent patch update, and
the use of special protocols with limited computing capabilities [4].
In modern.

ICS where controllability and integrity are prioritized, these
characteristics have security implications with potentially cata-
strophic consequences [5]. There have been efforts to quantitatively
evaluate and share information on discovered vulnerabilities in
information technology systems [6]. Government-owned re-
pository of security-related software flaws and vulnerabilities with
data on common vulnerabilities and exposures (CVE), and the
associated impact analysis tools such as the common vulnerability
scoring system (CVSS) and common weakness enumeration (CWE)
[7,8] are existing attempts to document and quantify security risks.
Also, in SCADA systems, there have been attempts to share known
vulnerabilities and SCADA network test tools used to secure against
cyber exploits [9]. However, for privacy and security considerations,
there are no known publicly available repositories for common
vulnerabilities in industrial-scale SCADA systems.

The inadequacy in utilizing the conventional ICT security tech-
nologies for SCADA systems and the inherent differences between
the characteristics of the information technology security approach
and that of SCADA systems and components have been demon-
strated [10]. The strong real-time constraints and requirements for
the domain-specific cyber-security approach for critical in-
frastructures have also been explained [11,12]. To address the se-
curity gaps observed in industrial control systems, some innovative
approaches to critical digital assets security have been presented. A
one-way and dual-path data diode that allows data to flow in a
single predetermined direction is being used to defend against the
cyber threat in some US nuclear installations. The architectural
design uses diodes to provide a form of physical separation be-
tween the operation of technology comprising digital instrumen-
tation and control, and the conventional information technology
space usually referred to as the business space in nuclear power
facilities. Data diode has been praised for its simple set up and
installation procedure, as well as its low maintenance cost [13].
However, it is inadequate, as complete isolation of critical cyber
assets, single destination gateway, installation cost, software sup-
port, and insider threat/human reliability issues still exist [13].

2.2. ML tools for SCADA IDS

Machine learning algorithms and other artificial intelligence
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models are being used in different fields to solve different prob-
lems. Clustering algorithms such as Naive Bayes, Random Forest, NB
Tree, support vector machine, neural networks, and an ensemble of
soft computing algorithms have been used to diagnose complex
system faults [14,15]. K-means recursive clustering [16,17], Hidden
Markov Model [18], Adaboost [19], fuzzy-based inference system
and its variants [20,21] have also been previously utilized for access
control in a metro system [22], and for embedded intrusion pro-
tection systems [23]. To build better classifiers, these algorithms are
often ensemble homogenously or heterogeneously, with specific
decision rules. To address security issues in SCADA systems, some
researchers have also utilized the real-time functionality of ma-
chine learning algorithms to detect malicious network traffic in
SCADA systems [16,24] and for other intrusions and anomaly
detection purposes [25,26]. Different SCADA intrusion and anomaly
detection techniques have also been combined into a single hybrid
system with decision rules [12,27]. Basically, the development of
ML algorithms for ICS security application involves the following
steps:

I. Identifying and obtaining threat signatures that represent
the intrusion to be detected (for signature-based, misuse
detection approach) or obtaining normal traffic features (for
anomaly-based approach).

II. Preprocessing and segmentation of the data into training,
testing, and validation set.

III. Identifying the confidence level required, and tuning the
hyper-parameters accordingly.

IV. Evaluating the performance of the algorithm on the repre-
sentative data as input to the trained model and comparing
the output within the range of the confidence interval
selected.

Variation in the implementation is observed in the spread of the
data used and the training techniques employed. Depending on the
sophistication of the algorithm, the training method, and the level
of automation involved, data preprocessing procedure could vary
from manual data sorting and partitioning to online adaptive
training with data obtained from field devices. Various heuristic
refinement and innovative training optimization techniques are
being utilized to enhance ML algorithms classification, clustering,
or predictive accuracy. Optimization techniques include iterative
online training with heterogeneous data [19], data scaling and
normalization [28], data dimensionality reduction with statistical
models and cross-validated data processing to improve learning
speed and detection time [29,30] and integrating multiple learning
techniques to reduce overfitting. Meta-heuristics and hyper-
parameter selection approach also vary for different algorithms.
The selection methods for neural networks' hidden layer transfer
function, layer number, optimal hidden neuron size, and output
layer activation function are discussed in Ref. [28]. Kernel-based
support vector machine heuristic selection and optimization for
various classification and regression problems and the application-
dependent confidence level requirement for each algorithm are
also discussed in Ref. [30,31]. Further tutorials on machine learning
or data mining methods for intrusion detection are presented in
Ref. [32,33].

3. Similarities and conflicts in ICS fault monitoring and
cybersecurity

3.1. Common techniques for developing data-driven IDS

Most of the available security solutions and protective tech-
niques against cyber-attacks in critical systems are focused on

extending traditional IDS networking needs and requirements that
generally match attack signatures using a signature-based IDS or
detect network anomalies with machine learning techniques [34].
In the development of signature-based IDS, attack patterns are
aggregated and processed to train the algorithm. Each traffic data is
labeled (supervised training) or clustered (unsupervised/semi-su-
pervised training) according to a specific pattern generated during
the attack. Anomaly-based systems utilize normal traffic data for
training and testing, and the anomaly is detected when there are
exceptional changes or deviation from known traffic. Robust
anomaly detection algorithms rely heavily on specific domain
protocols and legitimate characteristics of the target system for
efficient performance. Signature-based IDS rely on historical attack
signatures on specific systems for intrusion detection. This is a kind
of hypothesize-and—match technique where signatures of known
attacks are used to train the algorithm. However, signature-based
IDS cannot detect novel attacks, as it is impractical to acquire sig-
natures of all types of attacks in a single dataset. Also, the second-
order chaotic nature of exploits such as stealthy or spy attacks
makes novel attack prediction and simulation difficult. Fig. 1 shows
a detailed flow chart for the development of industrial IDS.

To support the argument in this section, we define a few ter-
minologies that could be ambiguous. We define the terms based on
their uses in engineering maintenance and complex system
security.

1. System fault: A spontaneous or slowly-developing, non-mali-
cious defects that cause detectable process deviation from the
recognized system's behavior. Such system faults include
component degradation, sensor drift, fouling or crud formation
on pipes, heat exchanger ruptures, etc.

2. Cyber-attacks: Hostile, malicious invasion of controls systems
and components with the potential to affect the availability,
integrity or confidentiality of the safety functions performed by
the control systems. It can also be a result of malicious misuse,
insider exploits resulting in anomaly behavior that impacts the
control system, networks or the process.

There are attacks aimed to exploit the vulnerabilities in
network-level based compatible field devices (e.g. DOS, DDOS, etc)
and there are some attacks aimed to exploit the SCADA process
controller itself (e.g. MITM, false sequential logic attack, etc).
Several IDS developers rely on data traffic from the network or host
domain alone.

Others utilize data from the physical process while some inte-
grate the information from different domains. The following sub-
sections describe each IDS development, its implementation chal-
lenges, and functional limitations.

3.2. Host/network domain-based IDS models

Network traffic features contain SCADA communication pat-
terns and information on the device such as the address, the packet
source, the packet, and function code length, etc. SCADA commu-
nication protocols can be specifically targeted by corruption,
interception, or tampering attacks. These can potentially lead to a
loss of confidentiality, visibility, or device connectivity, and also
provide support to implement process-aware attacks, thus
compromising safety and security.

The contemporary intrusion detection algorithms on informa-
tion technology assets are based on network traffic classifiers built
with IP network flows. Recently, an extension of the detection
system based on network behavior or host monitoring has been
utilized for intrusion detection in industrial control systems. This
technique uses anomaly-based or signature-based misuse
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Fig. 1. Flow chart for the development of industrial IDS.

detection models to detect system intrusion. As a signature-based
model, this approach involves creating a database that contains
all the signatures of the known payload attributes and single
packet-based attacks on SCADA protocols and using this database
in the development of the IDS. However, apart from the paucity of
the SCADA-specific training dataset, the signature-based approach
is ineffective in detecting novel attacks because updating attack
signatures is hard. Also, some zero-day, advanced persistent attacks
common to ICS have signatures that are not particularly known.
Considering these limitations to the development of signature-
based IDS, researchers now utilize an anomaly detection algorithm.

As an anomaly-based model, the approach involves inspection
of signals that specifies normal traffic, and building a model that
can identify the normal traffic pattern and flag abnormal usage.
This algorithm is built with normal system traffic data, and any
deviation from the normal operation is flagged as an anomaly.
Fuzzy inference systems and artificial neural networks were
applied in Refs. [35,36] to increase the security awareness of
embedded cyber sensors using network-level data. Network scan-
ning tools, Nmap and Nessus, were utilized to create abnormal
network behavior in an experimental control system testbed. The
detection systems were constructed based on the feature stream in
the network traffic packets. Anomaly-based IDS is relatively easy to
build as the data requirement is almost homogenous, and it is
convenient for application where the acquisition of attack signature
is difficult. It has a relatively simple design as it only processes a
single data stream from the network feed and does not require
attack signatures. However, the model is limited in real-world ap-
plications because it cannot identify and localize attacks. Moreover,
port registration, the legality of interception, and critical opera-
tional requirements for network packet inspection and port-based
analysis are other issues to yet be resolved [37]. A more important
limitation of this approach in critical infrastructures is that process
measurement is essential in detecting attacks. Control and safety is
the fundamental ICS function which makes it an attractive target

for sophisticated attackers. This is partly because of the technical
sophistication and resources that are available for threat actors
interested in such a facility. Hence, the historical behavior of the
physical process is critical to detect ICS cybersecurity incidence,
and the process parameters are the most effective indicators of the
historical and current state of the system and control functions.

3.3. Process measurement-based model for IDS

The discovery of attackers with partial or total control of the
sensor or actuator has led to the proposal of several intrusion
detection schemes for ICS using data collected from physical sen-
sors. To achieve the maximum return on the attack, most SCADA
penetration targets critical control devices such as sensors and
actuators. The exploit of these devices results in a significant impact
on the process measurements and the physical system. To develop
robust IDS, many researchers consider the application of process
variables. The logic considers attack scenarios such as false data
injection and deceptive man-in-the-middle (MITM) attacks that
could mask the real process state or present spurious parameter
measurement to manipulate the control response. For instance, an
attacker with access to process configuration could launch an
attack to modify process set-point and trigger undesirable system
response.

Li et al. [38] demonstrated the utility of process parameters in
detecting cyber intrusion by investigating a false sequential logic
attack on the SCADA system using process-level parameters.
Analysis of the physical effect of the attack on a simplified pump-
valve control system shows the possibility of serious process
disruption and equipment damage. Anomalies in a water supply
control system were detected using signal variations from a control
system to train and evaluate KNN, SVM and Random Forest algo-
rithms [39]. In this approach, process parameter deviations and
process variables non-conformity to natural behavior are used as
indicators of the anomaly. Data representing features expected in
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normal operations of the system is derived first. This dataset is used
to develop the anomaly detection algorithm. In the implementation
phase, the algorithm monitors the real-time operation of the sys-
tem and compares the real-time features with the features derived
from normal operations. In some applications, a dynamic threshold
is set to flag the comparison result that is beyond a certain level of
deviation from the normal features. An intrusion is detected when a
flag is generated. This is usually based on the possibility that an
attacker may pass a deceptive measurement in place of real mea-
surements, and manipulate control response, an instance of data
injection or false operation attack.

Behavioral modeling tools such as the autoregressive model is
being used to monitor for changes to high-value variables that
would normally stay constant [40]. A state-based intrusion detec-
tion system for MODBUS-DNP3 network traffic is presented in
Ref. [41]. Complex attacks are detected by considering the tran-
sitioning of the system from known steady, secure state to signifi-
cant process deviation that results in the critical system failure. The
state change information, process control knowledge and internal
representation of the SCADA system are utilized for intrusion
detection. Also, detecting the advanced persistent threat in the
SCADA system is possible through process monitoring. However,
the attractiveness of this method is beclouded by the fact that there
are many initiating events for process change. As previously stated,
observed deviation could be a result of normal operating transients,
incipient system fault, component degradation, sensor drift, cyber-
attacks or the combination of a number of these occurrences.

Incidentally, the real-time pattern attributes in the process
measurements also make it suitable for diagnosing system or
component faults. This attribute has been utilized to build inde-
pendent ML models for fault diagnostic purposes using only pro-
cess measurement. For instance, process deviation has been used to
diagnose the reactor coolant system and component faults using
neural networks [28], and support vector machine [29,30]. Evolu-
tionary algorithms and optimized statistical models have been used
to diagnose leakages in industrial steam generators [30,31].
Moreover, some of the reported cyber-attacks seek to compromise
ICS by first defeating the safety measures put in place. This method
of attack could be easily mistaken for a random fault. Diagnosing
the breach and identifying the root cause takes time and expertise.
For instance, the changes in a process variable for offset or geo-
metric attack that involves constant or time-dependent addition of
spurious values to the sensor or actuator output, and the variable
trend noticed for an incipient leakage in heat exchanger pipes or
reactor pump seal leakage may be difficult to differentiate. The
similarity in trend and signature may obscure the causal path and
eventually result in - at best — a false positive, or - worst case - a
more serious misdiagnosis resulting in safety breach and other
consequences of successful advanced persistent attacks. Fig. 2
shows the possible causal path for the observed process change
in complex industrial systems.

An attempt to distinguish between different anomalies by
analyzing the anomaly behavior based on the instrument output
data has been proposed by Jie et al. [42]. They argued that instru-
ment output beyond a fixed band, transfer function similarities in
the input-output relationship between two adjacent switch devices
and logical relationships in state values can be used to distin-
guished between system failure, DoS attack, and false data injec-
tion. However, they also utilized process level measurement alone
for the analysis. Moreover, the simple system analyzed to evaluate
the method does not represent the dynamics observed in complex
systems as demonstrated in section 3.4. Also, setting a fixed
threshold for a system with such dynamics is not viable. Moreover,
a similar method is prominent in fault identification and isolation
research work, especially for fault isolation and localization

involving sensor drifts and dropped packets.

The limitation in this model further explains the simplistic
approach and the reluctance in the real-world implementation of
some of the researched intrusion detection systems. Some re-
searchers [43,44] recognized the inherent weakness in the PID
system and considered integrating process-level information with
the network traffic data for robust intrusion detection.

3.4. Multi-domain data mining technique for IDS development

To address the issues identified with homogenous data-driven
intrusion detection systems, several researchers developed IDS al-
gorithms built on both host/network traffic data as well as process-
level knowledge to strengthened ICS security. Morris and Gao [45]
utilized network traffic information and state-based payload con-
tent features such as sensor measurements and distributed control
state to detect anomaly in a SCADA system. Zhang et al. [44], uti-
lized heterogeneous data derived from the simulation of five at-
tacks on a private ICS testbed. They compared the classification
performance of K-means, random forest and decision tree on the
data from the testbed. However, this approach also suffers from the
limitation of the process level intrusion detection. A much more
systematic approach would identify how various initiating events
(shown in Fig. 2.) interact to change the process variables. The
implementation of such a model in a real-world system is bound to
result in high false alarm rates. Table 1 summarizes the available
IDS techniques and decision engines utilized.

3.5. Case study: process measurements change initiating events in
the nuclear power plant

In complex systems such as nuclear power plants, there are
some operating transients and load changes that characterize the
normal operation of the plant. To ensure the balance of plant, a
typical nuclear power plant utilizes many distributed control and
safety systems designed to ensure safe operation and - in case of an
accident - safe shut down and cooling of the reactor core. In normal
operation, the neutron population and fission rate are being
controlled by several systems such as control rod and chemical
shim. In a typical PWR, minor reactivity or power adjustment is
done with the aid of the chemical and volume control system (.i.e.
boric acid). Also, based on the turbine-generator configuration for
the reactor, changes in the power demand from the grid could
necessitate a corresponding change in the power supply from the
reactor. All these changes introduce a unique dynamic into the
control of the nuclear power plant which needs to be integrated for
the robust development of IDS suitable for detecting attacks in such
systems. Fig. 3 shows a simplified representation of the nuclear
plant control system.

In Fig. 3, Layer 1 is the physical level where the sensor and ac-
tuators are utilized to control the physical system. The second layer
(Layer 2) is the distributed controllers responsible for implement-
ing automated control based on the current state of the component
being monitored. The controllers utilize the automatic feedback
response from the current process measurement output to set the
next stage of the process. In industrial control systems, this func-
tion is carried out by devices such as programmable logic con-
trollers (PLCs). These controllers have internal memory with the
capability to process control logic for the attached component and
to relay the measurement to the operator through the process
control network. Layer 3 is the process control network, where the
detection, control, and monitoring functions are usually performed.
Control and communication protocols such as Modbus, DNP3, etc
are used to ensure effective flow of control and safety signals.
Beyond the automated functions in Layer 2, additional safety and
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Table 1
Commonly used technique for developing ICS intrusion detection systems, data type and the decision engine utilized.
IDS Technique Training Dataset source Data type Decision engine References
Network traffic/host-based Testbed*® bSynthetic 0OCSVM; K-mean clustering [16,17]
KDD Real ANN, Neighborhood outlier [46]
Factor
NSL-KDD Synthetic GA-SVM; FNN [14,20]
1-class SVM [47]
DNN [48,49]
UNS-NB15 Synthetic DNN [48]
DARPA 1998 Real ANN, SVM, MARS [15]
ADFA-WD Synthetic ANN, SVM, HMM, ELM, [50]
STIDE
ADFA-LD Synthetic KNN, HMM, STIDE, Naive [51,52]
Bayes, k-means, SVM
SMO,
Testbed Synthetic SVM; KNN, Decision tree; [53]
Random forest
Process variable-based Testbed Synthetic Association rules [42]
Suez water distribution dataset Real One-class SVM [54]
Integrated approach(Network traffic **+C[PC-MSU water dataset Synthetic SVM, ANN etc. [22,55,56],
and process variables ORNL dataset Synthetic EM clustering [57]
KNN; NB, RF [58]
iTrust —SwaT Real data ANN; DNN [59,60]
Dataset
Testbed Real data KNN, decision tree, random [44]
Forest

2 Testbeds include the scaled-down version of the SCADA system that controls a real physical process or uses a hardware-in-the-loop (HIL) simulation of the physical

process.

b Synthesized data include those generated from SCADA mimics, workbenches, and sanitized data. Acronyms: ELM = Extreme learning machine; HMM= Hidden Markov
Model EM = expectation-maximization STIDE: Sequence Time-Delay Embedding; DNN = Deep neural network; FNN = fuzzy neural network; MARS = Multivariate Adaptive

Regression Splines.

control signals are routed through the process control network.
Layer 4 is the supervisory control and data acquisition layer with a
direct connection to the process control network. Here, the process
measurements are stored in a data historian. The dataset in this
historian are analyzed for fault diagnosis and maintenance pur-
poses. This layer also contains systems such as the control consoles,
workstations, servers, network equipment and systems with a
human-machine interface where operators can monitor and con-
trol the physical process.

A key aspect of this ICS security is the validity of the data values
sent from programmable logic controllers to the HMI. An attacker
could gain remote access to Level 2 sensors and actuators modify
their software or their environment or intercept the transmission.

With this access, attackers could launch coordinated attacks on the
physical system through the process being controlled. An attacker
who can manipulate the data values can mount attacks with severe
consequences. Access to layer 2 devices could also empower the
attacker to trick the human operator by sending spurious mea-
surements [61]. Another major consideration is the process mea-
surement dynamics introduced when complex ICS system
undergoes routine maintenance or part replacement. These dy-
namics also affect the process measurement trends used in the
development of some intrusion detection systems. In constructing
robust IDS applicable to the complex system utilized in the control
of a nuclear plant, it is pertinent to consider the nuances introduced
by the control of the plant, as well as the causal path of other
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Fig. 3. A simplified process control system for a typical nuclear power plant.

possible abnormal occurrences.

To further elaborate on the similarities in some stated attack and
incipient fault, consider the development of a state-aware intrusion
detection system for stealthy man-in-the-middle attacks against
ICS field-bus water tank level control system discussed in Ref. [62].
The study depicts a false data injection attack where the attacker
gains root access to sensor measurement and actuator command
(level 2 as illustrated in Fig. 2) and forces a decrease in water level in
a simulated industrial water tank. The attacker slowly changes the
sensor reading of the tank level using a small constant increment,
trying to remain undetected [62]. Also, the study designs a detec-
tion mechanism that relies on the residual which is the difference
between sensor measurement for the water level and its estimated
value. There are obvious similarities in the signatures generated in
this instance and many diagnostic approaches for incipient, slowly-
developing faults that also rely on process level change [31] and
residual generation for system fault detection.

Moreover, modeling and simulating the transients explained
above is not a trivial task. Researchers utilize several computer
codes to simulate process control and acquire process parameter
deviations. However, the outputs of the codes are estimates with
limited applications. Similar constraints are present in NIDS
development. Simulating attacks that represent real-world exploit
to retrieve signatory data, or to evaluate ML model performance is
difficult. Hence, most researchers rely on publicly-sourced data to
train, test, and evaluate the intrusion detection system. In the next
section, we examine the composition of public data repositories
and their reliability for developing ICS intrusion detection systems.

4. IDS data sources and data reliability

The key element that determines the optimum performance of
any data-driven model is the quality of the data used in its devel-
opment. Effective application of ML approach to intrusion detection
requires significant training data. Also, proper implementation and

reliability of the IDS depend on the sources and credibility of the
dataset. Datasets that contain normal and malicious traffic is scarce
and developers rely on abstracted simulation or synthesized
network traffic in publicly available data repositories to train the
ML algorithms. This is even more pronounced for critical ICSs,
where obtaining historical data of attacks is difficult. Commonly
used public database for NIDS is presented in Table 2. A prominent
source is the data presented by NSL-KDD, an improvement on KDD
99 dataset. KDD and its variant, NSL-KDD dataset has been applied
to develop IDS models such as artificial neural network and
neighborhood outlier factor [46], one-class support vector machine
[16,47] and fuzzy neural network [14,20]. The Center for Applied
Internet Data Analysis (CAIDA) and other repositories that captures
full or truncated local network packets including some background
traffic, useful for IDS researchers are also listed in Table 2. Australian
defense force academy windows dataset (ADFA-WD) and Austra-
lian defense force academy Linux dataset (ADFA-LD) are some of
the later adaptation for UNIX-based operating systems which
houses signatures of some contemporary cyber threats sourced
from exploiting vulnerabilities in virtual kernel-based hosts. ADFA-
LD and ADFA WD dataset utilized system call distribution pattern
and the number of traces contained in each class as the metric for
training ID algorithms, based on previous research on the accuracy
of system calls traces for decision engines. Data traces are collected
and utilized for the training and validation of IDS decision engines.
The dataset structure and raw trace count for both Linux and
Windows OS are as shown in Table 3. References to other datasets
and repositories of packet capture for network-based intrusion
detection systems are listed in Ref. [63].

Furthermore, categories of attack modeled to generate each
dataset are different, as it is impractical to model all possible at-
tacks in a single experiment. Table 4 contains the attacks simulated
to generate the dataset for KDD, UNSW-NB15, and NSL-KDD data-
sets and the number of instances for each attack. The distribution of
the data depends on the attack simulated and the domain
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Table 2

Open source data set for NIDS security research.
Data source Description Reference
ISCXIDS201 2 Repository of real traces from real network traffic collected and developed through research at the ISCX [64]
CAIDA Internet traffic data and links to varieties of other collections [65]
UNIBS-2009 Anonymized traces collected by U. Brescia Ground Truth (GT) software suite. [66]
UMass Trace A collection of network and multimedia traces for IDS analysis [67]

Repository

NFNSM data Repository of IDS-related packet capture traces for network security monitoring and open source PCAP repositories by the Network [68]

Forensic and Network Security
Monitoring

CSE-CIC-ID S 2018 captured network traffic and system logs for seven different attack scenarios on 420 machines and 30 servers, along with 80 features  [69]

extracted from the captured traffic

IES dataset Network traffic for TCP/UDP packets [70]

UNM dataset Collection of synthetic and live traces for system calls executed by active processes [71]

CICIDS2017 Repository of network traffic analysis of benign and common attacks with source and destination IPs, source and destination ports, [72]
protocols and attacks.

KDD-UCI A collection of datasets from UCI Center for Machine Learning and Intelligent [73,74]
Systems

NLS-KDD A repository of sanitized KDD-related data [75]

CIPC-MSU water  Data repository of the Critical Infrastructure Protection Center at the Mississippi State [45,56],

dataset University (MSU)

ADFA Australian defense force academy dataset for UNIX-based operating systems which houses signatures of some contemporary cyber threats [50]
sourced from exploiting vulnerabilities in virtual kernel-based hosts

UNSW-NB15 Australian Centre for Cyber Security (ACCS) generated packet captures of a hybrid of real modern normal activities and synthetic [76,77]
contemporary attack behaviors.

Table 3 would have to be collected for a comprehensive evaluation of the

Attack category and instances in KDD, UNSW-NB15 and NSL-KDD datasets.

Attack category Number of instances (Training + Test)

KDD UNSW-NB15 NLS-KDD
Remote to local(R2L 1126 — 77,054
Probing/Exploits 4107 44,525 14,077
Denial of service(DoS) 391458 16,353 53,385
User to root(U2R) 52 — 252
Analysis — 2,677 —
Backdoor — 2,329 —
Fuzzers — 24,246 —
Generic - 58,871 -
Reconnaissance — 13,987 —
Shellcode - 1,511 -
Worms — 174

considered. Commonly used dataset for SCADA and ICS intrusion
detection is presented in Table 5. Some of the repositories contain
data from legacy systems commonly found in industrial control
systems, while some combine the process measurements and
packet capture from advanced SCADA systems.

Data acquisition cost, privacy, and data source reliability con-
siderations have restricted most of the proposed ML-based IDS to
fixed, simplified parametric algorithms. Data paucity results in
constrained, weak algorithm, which poorly fit the data and cannot
process complex problems. Data inadequacy also results in biases
that are reflected in the performance of IDS systems [78]. Security
considerations inform the privacy imposed on ICS data and com-
mon vulnerabilities discovered in SCADA systems. Hence, most
research and commercial intrusion detection solutions project the
successes recorded in developing and testing the tool on other
platforms. Unfortunately, the dataset collected for a certain system
configuration is not a sufficient representation for all other appli-
cation and the full range of attack surface presented by different
hosts. For instance, as demonstrated in section 3.5, the SCADA ar-
chitecture in NPP and device connection varies from other indus-
trial control systems because of imposed special safety
requirements. Consequently, the data generated from such a
connection would be unique. Hence, application-specific traffic

performance of the tools meant for such systems. Moreover, in the
openly available data examined, there is no consideration for the
heterogeneous data requirement discussed in section 3.3. Where
the data is heterogeneous, it fails to consider other causalities
presented in Fig. 2, hence they are not representative of the real-
world complexity observed in industrial control systems. Also, for
security reasons, a number of the publicly available packet traces
are released in anonymized form, while some did not specify the
payload.

Data benchmarking is another challenge, because threat actors
and attack dataset evolve rapidly, making it difficult to rely on dated
data. Moreover, attack paths and malicious behavior considered for
each data set vary, as comprehensively capturing all possible ma-
licious intents and attacks for all ICS configurations is not feasible.
Besides, some of the testing and evaluation technique is subjective.
Many models are tested and evaluated on randomly sampled data
from the training set, resulting in reports of impressive accuracy in
theory, but high false positives on real-world systems. This also
makes an independent evaluation of SCADA IDS a difficult task.
Biased models are some of the results from deficient, highly syn-
thetic, non-representative data, skewed and redundant records
present in the publicly available dataset [75,78]. Existing datasets
face other reliability challenges. One is the fact that some re-
positories have an unlabeled dataset, and labeling them for appli-
cation purposes is difficult. Considering the size of data needed for
developing a robust intrusion detection model, some repositories
contain an insignificant amount of dataset or incomplete payload.

The value and ultimate reliability of a particular dataset depend
on the acquisition framework and application expertise. Hence, we
did not attempt to compare the performance of different datasets in
this work. Nevertheless, research work towards verifying KDD and
NSL-KDD as benchmark data set shows that the data set lacks
modern low footprint attack style, the normal traffic data is
outdated and there is a mismatch in the attack types, resulting in
different distribution for training and test dataset [77]. Currently,
there is no known effort to quantify the effect of synthetic data on
the real-world performance of the algorithm. Moreover, proclivity
for any of the datasets and user's preference decisions are unclear,
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Table 4
ICS network packet captures (PCAP) and process measurement data repository.

Data source Description

Reference

ORNL dataset

Oak Ridge National Laboratory's repository of measurements related to normal, disturbance, control and cyber-attack behaviors for electric [79]

transmission systems, gas pipeline, and energy management system.

ASL ICS traffic Repository of intercepted attack packets on ICS CTF with Modbus/TCP and Siemens S7comm traffic by Artisan Safety Lab [80]
repository

iTrust-SWaT Collection of network traffic and process measurement data on a fully operational scaled-down water treatment plant. [81]
repository

4SICS Repositories ICS dataset and industrial network equipment for hands-on testing. [82]

DigitalBond PCAPS DigitalBond S4x15 ICS Village CTF PCAPs

[83]

CSET-2016 dataset Labeled packet captures for both malicious and non-malicious SCADA Modbus traffic and accompanying CSV files, generated from a SCADA [84]

sandbox.
ICS PCAP Compilation of ICS PCAP files indexed by the protocol for ICS/SCADA utilities and protocols [85]
repositories
UCCT-ICS PCAP Cybersecurity PCAP repository by University of Coimbra cybersecurity team [53]
2000 DARPA Defense Advanced Research Projects Agency DARPA intrusion detection evaluation on LLDOS and WindowsNT [86]
Dataset
LBNL/ICS A set of ICS packet header traces from October 2004 through January 2005 [87]

Packet Traces

Table 5
Threat models and their evaluation metric.
Threat model/Attacks analyzed Evaluation metrics References
DoS, MITM, NetScan Classification accuracy; detection speed [16]
NSL-KDD attacks*® Neighborhood Outlier Factor [46]
Class accuracy, Detection rate, False alarm rate [14,15,20]
ROC curve [47]
Class accuracy, detection rate, false-positive rate [48,49]
UNS-NB15 Attacks® Class accuracy, detection rate, false positive rate [17,48]
ADFA attacks (Privilege escalation/system manipulation, data exfiltration) ROC curve/Detection rate [50—52]
ARP-based MITM,Modbus-query flooding; ICMP flooding; TCP-SYN flooding Class Accuracy [53]
DOS, Sensor injection attack Reliability parameter [42]
Man-in-the-middle (MITM) Detection rate [54]
Reconnaisance, Naive and complex injection attacks Kappa statistics; detection speed [45,55]

Classification accuracy; False positive rates; Confusion Matrix; Kappa statistics [22,56]

Command injection, relay settings change, data injection.
Single and multiple-stage, multi-point attacks

Detection rate, False positive rate
ROC curve;

[57,58]
[59,60]

2 The attack categories in this dataset are presented in Table 4.

subjective or based on convenience. Hence, a detailed analysis of
the dataset for suitability is recommended, as diverse data collec-
tion methods were implemented for the datasets [88]. Hence, the
computing domain, network protocol, simulated threat models,
attack path, attack sequence, and originality are some of the con-
siderations critical to the successful utilization of these resources
for building a robust intrusion detection system.

4.1. IDS performance metrics and evaluation testbeds

Common ML algorithm performance evaluation technique
computes the number of false alarms generated (percentage of false
positive), classification accuracy, detection rate, or statistical per-
formance measurements. To generally define the percentage of
correctly classified instances among the total number of instances,
commonly applied ML IDS evaluation methods are the detection
rate (DT), true positive (TP), false positive(FP), true negative (TN),
and false-negative (FN). Based on the constraints defined above for
critical infrastructure, the selection of any of these metrics is highly
subjective and situation driven. The Receiver Operating Charac-
teristics curve (ROC), is one of the most widely used evaluation
metrics. It is a plot of a false-positive rate versus the sensitivity,
with the area under the curve reported as a good measure of an
algorithm's classification performance. However, the ROC curve is a
weak metric for IDS evaluation [78]. Table 5 shows some of the
performance evaluation approaches for certain IDS techniques.

Although comparison of different IDS methods is difficult

because the datasets for either network-based or process-based
IDSs for major critical systems are not available, there are
research efforts towards ML algorithm performance evaluation
using a single platform such as Waikato environment for knowl-
edge analysis (WEKA) [89] and testbeds for the development and
validation of cybersecurity solutions [12]. Most testbeds consist of
some switches, process monitors and PLCs to mimic small-scale
industrial SCADA systems, with the capability to detect several
network layer attacks such as DoS, port scanning, spoofing, etc.
Research that evaluates common models built by respective
evolutionary algorithms for data mining problems using knowl-
edge extraction based on evolutionary learning (KEEL), WEKA and
Rapid Miner (RM) ML data mining tools have been conducted [90].
Although limited in scope, a significant difference was reported for
model output from each tool. Apart from data reliability issues,
extending such research to cover critical infrastructure requires
careful consideration of the nuances in the generated data.

5. Discussion and recommendation

Predicting and responding to assault against cyber-physical
systems is an art because of the range of novelty involved in
cyber-attacks. Moreover, the fuzziness of the attack surface,
modernization, and sophistication of the attack or the threat actors
also make the defense of the industrial control system a challenge.
Most critical is the non-parametric characteristic of the cyber
attacker and the physical consequence of a successful attack on ICS
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with increasingly short detection and response time before the
adversary violates the monitored system. Application of data-
driven tools to the monitoring and detection of cyber-attack
comes with a lot of promises. However, the rate of false alarm
generated in real-world applications is a serious issue. In the
development of a robust SCADA defense system, the questions
about the influence of diverse cause of abnormal occurrence on the
rate of false alarm generated by the IDS needs to be addressed. A
critical analysis is needed to establish the nuances between
different industrial control system configurations, the process
behavior, component and its failure conditions, control principles,
and how process knowledge could aid a successful attack.

Dataset lifespan is being shortened and “benchmark” datasets
are fast becoming obsolete because threat actors are highly dy-
namic and sophisticated, and the corresponding upgrade in mod-
ern systems generate different data composition. Developing a
new, comprehensive dataset requires detailed consideration for
modern attack surface and well-defined dataset structure. Per-
forming extensive evaluation of the system to obtain a robust
dataset that considers zero-day and other modern exploits are
expensive. Extending such consideration to different network ar-
chitecture present further difficulties. In the absence of a robust
historical database for specific real-world SCADA intrusions,
establishing unified criteria to evaluate the effectiveness of existing
IDS is difficult.

Also, proper development and implementation of a data-driven
algorithm that seeks to identify and localize attacks based on
dataset require a certain level of domain expertise. We observed
some knowledge gaps in the development of ML algorithms.
Multidisciplinary approach and domain knowledge are crucial to
precisely define the expected operating conditions, analyze the
available data, distill the output result, evaluate the performance of
the algorithm, and characterize the nature of the detected anom-
alies. That is, the selection of appropriate dataset suitable for
certain application require domain expertise. First, we observed
that different data segmentation and selection methods are
implemented to process data for algorithm development. Some
researchers randomly select features or instances of data from the
database for training the algorithm. Testing is done by another
round of randomly selected features or instances, while others used
the whole dataset for training and evaluating the algorithm. In the
works of literature reviewed, no study describes the effect of these
data sampling methods on the performance of the algorithm. For
instance, an algorithm trained with large data size has been proven
to present better performance than those trained on a small data
set [46]. Despite prior evidence, worse algorithm performance with
a larger dataset has been reported [22]. This lack of domain
expertise and oversight in requisite preprocessing that goes into
building an effective decision engine has limited the application of
these engines in real systems. Secondly, most studies do not pre-
sent a hyper-parameter selection method or optimization tech-
nique for the model, while some studies have no cognitive
justification for the data preprocessing technique or model evalu-
ation method used. Although we found some dated research that
discusses issues on testing intrusion detection systems [91], we
recommend a new study in this area, considering the rate of
development in this field.

Moreover, efforts need to be directed to address the issues that
constraints extensive evaluation of available algorithms. For
instance, the performance of IDS built on data from privately
owned protocol-specific testbeds cannot be independently
repeated. Also, testing a model developed with data from a
different SCADA configuration may not scale well on these testbeds.
Besides, deploying such an intrusion detection model on produc-
tion SCADA may result in high false negatives. This is because some

interactions occur in a production SCADA that may not be well
represented in testbeds. For instance, in a pressurized water nu-
clear power plant, the process control network is directly con-
nected to critical programmable logic controllers and other sub-
networks that handle information flow for the controllers that
control the reactor, steam generator, feedwater flow, and the tur-
bine. The scale of data exchange on such a process control network
would be difficult to simulate using small scale testbeds. Also, the
complex routine interaction that occurs between the connected
components add an extra signature that needs to be considered to
establish a robust testbed. Nevertheless, a good start is the devel-
opment of open-source, high-fidelity, large-scale testbeds or
SCADA virtual architectures, network and system simulators and
programmable logic controllers to design, test and validate these
algorithms [82,92,93]. A predictable issue with publicly available
SCADA virtual architecture is that this architecture is also available
to attackers to test their exploits, which present a cyber defense as a
second-order chaotic problem. False-positive can be triggered
intentionally by attackers with knowledge of the specially crafted
data manipulation to feed into the system.

Consequently, it is necessary to develop a comprehensive
abnormal occurrence detection system. We propose a dedicated
private virtual machine or a “digital twin” with the capability to
utilize real-time data from complex processes and reproducing a
functional representation of the process, suitable for testing and
evaluating the performances of a dedicated intrusion detection
system without interrupting the real process. At the core of the
digital twin is the development of a high-fidelity data-driven pro-
totype of industrial machines and components. This virtual proto-
type is developed fully based on the physical pair, and runs in
parallel with the physical system, enabling real-time condition
monitoring, change detection, and process optimization. It can be
developed as a virtual prototype of the nuclear power plant,
enabling functional verification, virtual commissioning, and system
performance analysis before, during, or after maintenance or major
component changes. This allows for rapid task-planning and testing
in the virtual world before any system changes are made to the
physical plant.

There are two possible implementations of the digital twin:

1. Design (information/knowledge-driven): This approach in-
volves developing a high-fidelity virtual prototype of the
physical system using a database containing detailed design
information, inspection information, maintenance, and service
records, among others. This information is used to develop a
simulation model that runs in-line with the physical system.

2. Data-driven: The data-driven approach involves utilizing real-
time sensor values and parametric data as the input to the
model. The model could be developed using deep learning or
other machine learning algorithms. The parametric data with
real-time process information are used to dynamically train the
model, and the predictive output of the model is used as the
prediction for the next sensor reading.

The capability of this digital twin could be extended to recog-
nizing the nuances between random system faults, cyber events,
and other anomaly initiators. Functionally, the system will explore
the dependency effect of process change and network traffic data to
effectively classify process change resulting from system fault and
cyber-attack. This ultimately tends towards a re-designed resilient
ICS with the capacity to perform an important safety function un-
der cyber-attacks and incipient faults. This system will possess a
mechanism to detect system faults and cyber-attacks indepen-
dently while using redundant reconfiguration to achieve safety
functions if the control system is under attack. Since process
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variables deviate due to different reasons, weights could be
attached to reduce the contribution of this consideration in the
final intrusion detection output. Real-time implementation of this
system is critical, to eliminate manual network traffic data sorting
and additional pre-processes expertise.

6. Conclusion

A robust and sufficient security solution demands a compre-
hensive consideration of all critical interactions in the systems.
Detecting process-level attacks targeting loss of SCADA process
visibility or manipulating critical process parameters is not
considered by many IDS proposals. This results in user-dependent
monitoring systems with a high false alarm rate and low reli-
ability. A framework to integrate process level constraints with
network-level needs has been implemented. However, the works
did not consider the complexity that characterizes industrial con-
trol systems, resulting in process changes for different operating
states and initiating events.

In this work, we argue that the major contribution to the false
alarm generation is the failure to identify and differentiate between
the inherently similar signature that defines normal transients
common to a complex system, incipient/slowly-developing fault
and cyber intrusion with physical impact on the process informa-
tion. To support our argument, we discuss nuclear plant control
system characteristics that account for observed process mea-
surement change and high false alarm rate for the intrusion
detection system applied to detect intrusions on industrial con-
trollers. Also, to aid IDS development and evaluation, we presented
available synthetic and real industrial control systems data re-
positories. To significantly reduce the amount of nuisance alarm
generated, we recommended an approach that considers the nu-
ances in the data used in the development of machine learning
algorithms. The present findings and recommended course of ac-
tion serve as a foundation for the development of robust IDS with a
significant reduction in the false alarm problem common to current
intrusion detection systems.
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