• Title/Summary/Keyword: ablation properties

Search Result 130, Processing Time 0.029 seconds

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

Nano Fabrication of Functional Materials by Pulsed Laser Ablation

  • Yun, Jong-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Nanostructured materials arecurrently receiving much attention because of their unique structural andphysical properties. Research has been stimulated by the envisagedapplications for this new class of materials in electronics, optics, catalysisand magnetic storage since the properties derived from nanometer-scalematerials are not present in either isolated molecules or micrometer-scalesolids. This study presents the experimental results derived fromthe various functional materials processed in nano-scale using pulsed laserablation, since those materials exhibit new physical phenomena caused by thereduction dimensionality. This presentation consists of three mainparts to consider in pulsed laser ablation (PLA) technique; first nanocrystallinefilms, second, nanocolloidal particles in liquid, and third, nanocoating fororganic/inorganic hybridization. Firstly, nanocrystalline films weresynthesized by pulsed laser deposition at various Ar gas pressures withoutsubstrate heating and/or post annealing treatments. From the controlof processng parameters, nanocystalline films of complex oxides and non-oxidematerials have been successfully fabricated. The excellentcapability of pulsed laser ablation for reactive deposition and its ability totransfer the original stoichiometry of the bulk target to the deposited filmsmakes it suitable for the fabrication of various functionalmaterials. Then, pulsed laser ablation in liquid has attracted muchattention as a new technique to prepare nanocolloidal particles. Inthis work, we represent a novel synthetic approach to directly producehighly-dispersed fluorescent colloidal nanoparticles using the PLA from ceramicbulk target in liquid phase without any surfactant. Furthermore, novel methodbased on simultaneous motion tracking of several individual nanoparticles isproposed for the convenient determination of nanoparticle sizedistributions. Finally, we report that the GaAs nanocrystals issynthesized successfully on the surface of PMMA (polymethylmethacrylate)microspheres by modified PLD technique using a particle fluidizationunit. The characteristics of the laser deposited GaAs nanocrytalswere then investigated. It should be noted that this is the first successfultrial to apply the PLD process nanocrystals on spherical polymermatrices. The present process is found to be a promising method fororganic/inorganic hybridization.

  • PDF

Prepatation of$(Ba_{0.5}, Sr_{0.5}) Tio_3$thin folms by Laser Ablation technique and their electrical properties with different electrodes (Laser Ablation에 의한 $(Ba_{0.5}, Sr_{0.5}) Tio_3$박막의 제조와 전극에 따른 전기적 특성)

  • Yun, Sun-Gil;Safari, A.
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.401-405
    • /
    • 1994
  • The chemical composition and electrical properties were investigated for epitaxially crystallized $(Ba_{0.5}Sr_{0.5})Tio_3$ (BST) films deposited on Pt and $YBa_Cu_3O_{7-x}$(YBCO) electrodes by laser ablation technique. The crystalline quality of the heteroepitaxial BST films deposited on Pt bottom electrode was found to be better than that of BST film on YBCO electrode by the RBS analysis. Films deposited at $600^{\circ}C$ on Pt electrode showed a dielectric constant of 320 and a dissipation factor of 0.023 at 100kHz. Leakage current density of BST films on Pt electrode was smaller than that on YBCO bottom electrode. Their leakage current density was about 0.8$\mu \; A/ \textrm{cm}^2$ at an applied electric field of 0.15MV/cm.

  • PDF

Effects of Two-Step Annealing Process on the Pulsed Laser Ablated Lead Zirconate Titanate Thin Films

  • Rhie, Dong-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.43-47
    • /
    • 2003
  • Lead zirconate titanate (PZT) thin films were fabricated by the pulsed laser ablation deposition (PLAD) method onto Pt/Ti/SiO$_2$/Si substrates. Crystalline phases as well as preferred orientations in PZT films were investigated by X-ray diffraction analysis (XRD). The well-crystallized perovskite phase and the (101) preferred orientation were obtained by two-step annealing at the conditions of $650^{\circ}C$, 1 hour. It was found that the temperature for the pulsed laser ablated PZT films annealed via a two-step annealing process can be reduced 20$0^{\circ}C$ compared to that of the conventional three-step annealing temperature profile for enhancing the transformation of the perovskite phase. The remanent polarization and the coercive field of this film were about 20 $\mu$C/$\textrm{cm}^2$ and 46 kV/cm, while the dielectric constant and loss values measured at 1 KHz were approximately 860 and 0.04, respectively. The interesting phenomena of this film, such as vertical shift in hysteresis curve, are also discussed.

Modified Monopole Antenna for Microwave Thermal Therapy (마이크로파 에너지를 이용한 열 치료용 링-모노폴 안테나)

  • 문명호;곽상태
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.86-90
    • /
    • 2001
  • Modified coaxial-slot antenna for minimally invasive microwave thermal therapy for liver tumor is studied in this paper. Minimally invasive microwave antenna in medicine are applied for hyperthermia for medical treatment for cancer, cardiac catheter ablation for ventricular arrhythmias treatments, microwave treatment of Benign prostatic hypertrophy, and so on. Microwave hyperthermal ablation for liver tumors is expected for enthusiasts as an alternative to curative surgical resection. Tumors have to heated up to 60 degree C to coagulate .cancer cells but less than 100 degree C to avoid evaporation. Temperature dependence of properties of the tissues should be considered for wide range of treatment. Electrical properties of liver tissue were measured for different temperatures. SAR distribution around the antenna into the liver are simulated using Remcom's XFDTD.

  • PDF

Magnetic Properties of Polycrystalline ${BaFe_{12}{O_{19}$ Films Grown by a Pulsed Laser Ablation Technique

  • Sang Won Kim;Choong Jin Yang
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • Highly oriented ${BaFe_{12}{O_{19}$ films were obtained by a KrF excimer laser ablation technique using (110)$(012){Al_2}{O_3}$(001)$(012){Al_2}{O_3}$ and $(012){Al_2}{O_3}$ substrates, respectively.The degree of alignment of more than 95% were achieved for (100) on (110)$(012){Al_2}{O_3}$ and (001)$(001){Al_2}{O_3}$ planes, and heteroepitaxial films of (114) on (012)$(012){Al_2}{O_3}$were possible to be grown with a lasing energy density of 6.67 J/$cm^2$ at an oxygen partial pressure ${PO_2}$ of 900 mTorr. The best magnetic properties were obtained from the as-deposited films at the substrate temperature of $700^{\circ}C$, and post annealing treatment was not needed to enhance the magnetic properties. Experimentally saturated magnetization ($4_pi M_S$) of 3600~3800 Gauss and coercivities $(H_c)$ of 3050~3080 Oe, which approach 85% of those of Ba-ferrite bulk composed of single domain particles, were obtained in this study.

  • PDF

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of Carbon Fabrics (하이브리드화에 의한 탄소 직물 복합재료의 역학적 특성 및 열적 특성)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.18-24
    • /
    • 2007
  • The mechanical and thermal properties of PAN-based/rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties including tensile and interlaminar shear strengths were improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate and insulation index were determined through the torch test. Continuous rayon-based carbon fabrics composite indicated relatively low ablation resistant property. The thermal conductivity of hybrid composite of spun PAN-based/continuous rayon-based carbon fabrics is lower than that of the continuous PAN-based carbon fabrics composite.

The Applications of the Duplex Stainless Steel as Hyperthermia Materials

  • Kim, Young-Kon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.1-7.1
    • /
    • 2009
  • The use of Duplex stainless steel as a thermo-implant categorizes into two clinical applications: hyperthermia and thermal ablation or destruction. The goal of hyperthermia is to destroy the heat-sensitive abnormal cells and minimize normal cell death maintaining heat between $42^{\circ}C$ and $46^{\circ}C$. Thermal ablation takes place when the local tissue temperature increases greater than $46^{\circ}C$. This elevated temperature denatures protein irreversibly resulting cellular death. The author introduced several thermo-implants such as thermo-rod, thermo-stent, thermo-coil and thermoacupuncture-needle. Those thermo-implants are made of duplex stainless steel which can produce regulated heat by itself within an induction magnetic field. Thermal ablation characteristics of the thermo-rod on tumor hyperthermia depend on configurations of the thermo-rods and the magnitude of the induction magnetic strength. The exothermic properties of the thermo-implants can be characterized using the calorimetric test and the heat affected zone(HAZ) analyses in vitro. Thermal radiation studies using thermo-coils and thermo-stents show the capability of the occlusion of animal blood vessels and inhibiting the proliferation of the abnormal smooth muscle cell growth and inflammatory cell reactions maintaining the heat between $42^{\circ}C$ and $46^{\circ}C$ minimizing a normal cell death in the study on external iliac artery of the New Zealand White (NZW) rabbit. Thermal stimulation study using thermo-acupuncture needles suggests the potential applications of the automated acupunctural therapies.

  • PDF

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application (N형 양면 수광 태양전지를 위한 레이저 공정의 후면 패시베이션 적층 구조 영향성)

  • Kim, Kiryun;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.