Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.5.262

Effect of Laser Ablation on Rear Passivation Stack for N-type Bifacial Solar Cell Application  

Kim, Kiryun (Graduate School of Energy Science and Technology, Chungnam National University)
Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.5, 2020 , pp. 262-266 More about this Journal
Abstract
In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 ㎲ higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.
Keywords
bifacial solar cell; passivation effect; laser ablation; atomic layer deposition; n type Si;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Rudiger, S. Fisher, J. Frank, A. Ivaturi, B. S. Richards, K. W. Kramer, M. Hermle and J. C. Goldschmidt, Sol. Energy Mater. Sol. Cells, 128, 57 (2014).   DOI
2 C. Zhang, H. Shen, L. Sun, J. Yang, S. Wu and W. Lu, Energies, 13, 1388 (2020).   DOI
3 M. Raghuwanshi, A. Laterne, J. L. Perchec, P. Pareige, E. Cadel, S. Gall and S. Duguay, Prog. Photovoltaics, 23, 1724 (2015).   DOI
4 W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. D. Ceuster, K. R. Mcintosh, D. D. Smith and R. M. Swanson, in Proc., 19th EPVSEC, p.387 (2004).
5 A. Hubner, A. G. Aberle and T. Hezel, Appl. Phys. Lett., 70, 1008 (1997).   DOI
6 R. Hezel, Prog. Photovoltaics, 11, 549 (2003).   DOI
7 K.-H. Cho, Y. J. Cho, H. S. Chang, K.-J. Kim and H. E. Song, J. Korean Phys. Soc., 67, 995 (2015).   DOI
8 K. H. Cho, Y. J. Cho and H. S. Chang, J. Koran Ceram. Soc., 51, 197 (2014).   DOI
9 M. S. Jeong, S. J Choi, H. S. Chang, J. I. Lee, M. G. Kang, D. H. Kim and H. E. Song, Jpn. J. Appl. Phys., 55 (2016).
10 G. M. Kim, Y. J. Cho and H. S. Chang, Korean J. Mater. Res., 29, 228 (2019).   DOI
11 J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden and W. M. M. Kessels, Prog. Photovoltaics, 16, 461 (2008).   DOI
12 D. Pysch, A. Mette, A. Filipovic and S. W. Glunz, Prog. Photovoltaics, 17, 101 (2009).   DOI
13 P. Jaffrennou, A. Uruena, J. Das, J. Penaud, M. Moors, A. Rothschild, B. Lombardet and J. Szlufcik, Proceedings of the 26th World Conference and Exhibition on Photovoltaic Solar Energy Conversion (2011).
14 F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao and L. H. Chan, Microelectron. Eng., 71, 104 (2004).   DOI
15 J. Dupuis, E. Fourmond, J. F. lelievre, D. Ballutaud and M. Lemiti, Thin Solid Films, 516, 6954 (2008).   DOI
16 M. I. Alayo, I. Pereyra, W. L. Scopel and M. C. A. Fantini, Thin Solid Films, 402, 154 (2002).   DOI